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Two distinct modes of learning in neural networks
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Normally, only happens if we explicitly meta-train for it:
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But in-context (few-shot) learning can also emerge
...when trained on a very different objective!

Language Models are Few-Shot Learners Flamingo

sea otter => loutre de mer examples

GPT-3

peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt



How do large transformer models achieve emergent in-context learning?

Hypothesis: Maybe it's because the distributions of naturalistic data have special properties

Natural data is long-tailed Natural data is bursty
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. Maybe training on naturalistic data is like an interpolation
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Standard Supervised

e items recur and are uniform
e label mappings are fixed
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Naturalistic data
(e.g. language)

e words do recur
e word meanings are somewhat fixed
but also:

some rare words are bursty

rare words do not recur often /\
many-to-many relationships /
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few-shot learning emerges,
even without explicit training

Few-shot meta-training

explicitly train for few-shot learning

e items differ on every episode
e label mappings are only fixed within
episodes
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Our Project

Hypothesis: Certain non-uniformities in data distributions can lead to
emergent few-shot (in-context) learning, and this is a general phenomenon.

Experiments: Modify a standard few-shot learning image dataset
(Omniglot), to control these distributional properties and measure their
effects on few-shot learning.

Implications:

e understanding how we might design or collect datasets to achieve
in-context learning in domains outside of language



General structure of the experiments

transformer (causal)
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Training data

e |abels are fixed across all of training

Example "bursty” sequence

b821 0216 0216 b821 h45 0216 8579 b821

Two ways to solve:

1. In-weights memorization

2. In-context learning

context

query
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Evaluation data

Example evaluation sequence for in-context learning Compositional binding

e Two holdout classes, randomly assigned to labels [O, 1]

of images and labels

Xo Xo Z1 Xo Z1 Z1 Xo Zi

?

X

context

Example evaluation sequence for in-weights memorization

e The query class was seen in training, and does not appear in the context.
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What Kinds of
raining data promote
-context learning?
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Importance of burstiness in the data
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Transformers succeed at the Omniglot challenge:
Importance of number of classes in the data

In-context learning on holdout classes.

1.0
# training classes 0.8 /
— 100 206 /'
- 1600 g chance
—— 12800 .04
0.2
0.0
1 2 3 4 5
# train steps le5

=>  More training classes leads to better
in-context learning

(b) In-weights learning on trained classes.
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=>  Again, in-context learning trades off
against weights-based learning
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Other natural data-inspired distributional properties

Dynamic meaning:

Multiplicity of item-label mappings Within-class variation
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ing. Increasing the number of labels per class (‘label
multiplicity’) increases in-context learning.
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We can achieve both kinds of learning when we train on skewed distributions.

Examples of Zipfian distributions. p(X = x) « — Distribution of tokens in a natural language corpus.-
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=> Thereis a sweet spot at Zipf exponent = 1, where we attain both few-shot learning and in-weights memorization “"

=>  Intriguingly, Zipf exponent 1 corresponds approximately to the skew in natural languages
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But architecture
oes matter (00...
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Transformers vs RNNs

In-context learning on holdout classes.
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Recurrent models never achieve few-shot learning, with the same training data
But even though architecture matters, it's not enough — we need the right data, too
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Conclusions
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Implications for compositionality

We study in-context few-shot learning, which can be
construed as a a narrow instantiation of compositionality.

Our findings on the drivers of this emergent behavior:
e |arge-scale data and models are not necessary

e Certain distributions of training data promote it
o these distributional features are present in
natural data like language

e Architecture matters too
o Transformers > RNNs

Andreas 2020
AkyuUrek & Andreas,
2022
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Implications for compositionality

We study in-context few-shot learning, which can be
construed as a a narrow instantiation of compositionality.

Our findings on the drivers of this emergent behavior:
e |arge-scale data and models are not necessary
e Certain distributions of training data promote it

o these distributional features are present in
natural data like language

e Architecture matters too

o Transformers > RNNs

Transformers can perform well on
certain kinds of composition

mNs with memory augmentation \
*could* perform well on SCAN

(Lake et al 2019)

memory-augmented NNs help
meta-learning because they
have both long-term and
short-term storage (that is
stable + element-wise
addressable) (Santoro et al
2013)

transformers have the desired
properties as well
transformers may perform
compositional operations
(Elhage et al 2021; Olsson et al

2022) /




Implications for compositionality

We study in-context few-shot learning, which can be
construed as a a narrow instantiation of compositionality.

Our findings on the drivers of this emergent behavior:

e |arge-scale data and models are not necessary
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e Certain distributions of training data promote it

o these distributional features are present in
natural data like language

e Architecture matters too
o Transformers > RNNs
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