
Human-like compositional
generalization through meta-learning

Brenden M. Lake
New York University

Meta AI

Human-like compositional
generalization through meta-learning

Brenden M. Lake
New York University

Meta AI

Marco Baroni

Collaborators

Tal Linzen

CC

Systematic compositionality
The algebraic capacity to understand and produce novel

combinations from known components

One-shot learning:
“This is how you dax”

Can you then:
“Dax twice?"
"Dax while jumping?”
“Dax wildly around the room?”

Systematic compositionality
The algebraic capacity to understand and produce novel

combinations from known components

Reevaluating F&P’s arguments in the age of deep
learning

Recent benchmarks for compositional generalization
• SCAN (Lake & Baroni, 2018)
• CLOSURE (Bahdanau et al., 2019)
• DBCA (Keyers et al., 2019)
• Comparisons (Dasgupta et al., 2019)
• COGS (Kim & Linzen, 2020)
• gSCAN (Ruis et al., 2020)
• PCFG SET (Hupkes et al., 2020)
• NMT Challenge (Dankers et al., 2022)

What do we find?
Somewhat surprisingly, neural networks still struggle on tests of
systematicity

1. Behavioral studies to compare humans and machines
side-by-side on the same tests of systematicity

2. An approach to building neural networks that can
achieve human-like systematic generalization, through an
optimization procedure that encourages systematicity

Goals of this work

Study instructions Test instructions

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 1

88%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 3

86%

86%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 2

88%

79%

●●●●
●●●●
●●●●
●●●●●●
●●●●●●

Training examples

zup fep kiki lug

wif kiki zup fep

lug kiki wif blicket zup

zup blicket wif kiki dax fep

zup blicket zup kiki zup fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function compositions

85%

65%

70%

75%

85%

Figure 2: Few-shot learning of instructions in Exp. 1. Participants learned to execute instructions in a novel language of pseudowords by
producing sequences of colored circles. Generalization performance is shown next to each test instruction, as the percent correct across
participants. The pseudowords and colors were randomized for each participant; the figure illustrates an example of such an assignment.

presented in random order.
We used several strategies to ensure that our participants

were paying attention. First, before the experiment, partici-
pants practiced using the response interface and had to pass
an instructions quiz; they cycled through the quiz until they
passed it. Second, catch trials were included during the test
phases, probing the study items rather than new items, with
the answers clearly presented on the screen above. There was
one catch trial per stage (except the last stage had two); a par-
ticipants’ test data was excluded if the participant missed two
or more catch trials (n = 5). Finally, test phases were also
excluded if the corresponding study phases were not passed
in the allotted time (13% of remaining data).

Recurrent neural networks. Standard sequence-to-
sequence recurrent neural networks (RNNs; Fig. 1) failed
to generalize from the study set to the test set. RNNs were
trained using supervised learning on the 14 study instructions
and evaluated on the test instructions (Fig. 2), using the
best overall architecture from Lake and Baroni (2018) on
the related SCAN benchmark (2-layer LSTM encoder and
decoder, 200 hidden units per layer, a dropout probability
of 0.5, no attention). This network (Fig. 1) consists of two
neural networks working together: an encoder RNN that
processes the instruction and embeds it as a vector, and a
decoder RNN that decodes this vector as a sequence of output
symbols. Another top architecture from Lake and Baroni
was also evaluated (1-layer LSTM encoder and decoder, 100
hidden units per layer, dropout 0.1, with attention). The
training setup mimicked Lake and Baroni but with 10,000
instruction presentations, corresponding to about 700 passes
through the training data (epochs). Several variants of the
architectures were also trained, repeatedly reducing the
number of hidden units by half until there were only three
hidden units per layer. Averaged across five random seeds,
no architecture generalized better than 2.5% correct on the

test instructions, confirming Lake and Baroni’s conclusion
that seq2seq RNNs struggle with few-shot learning and
systematic generalization.

Results. Human participants showed an impressive ability
to learn functions from limited experience and generalize to
novel inputs, as summarized in Fig. 2. In the first three
stages, performance was measured separately for each func-
tional term after exclusions through the above attention cri-
teria. Average performance across participants was 84.3%
correct (n = 25), counting sequences as correct only if every
output symbol was correct. Measured for individual func-
tions, accuracy was 88.0% (n = 25) for Function 1, 83.3%
(n = 24) for Function 2, and 86.4% (n = 22) for Function 3.1

Participants were also able to compose functions together
to interpret novel sequences of instructions. In the final stage,
accuracy on complex instructions was 76.0% (n = 20). Peo-
ple could generalize to longer and more complex instructions
than previously observed, an ability that seq2seq neural net-
works particularly struggle with (Lake & Baroni, 2018). Dur-
ing the study phase, the most complex instruction consisted
of five input pseudowords requiring two function composi-
tions, producing four output symbols. At test, most partici-
pants could successfully go beyond this, correctly processing
six input pseudowords requiring three function compositions,
producing six output symbols (72.5% correct).

The pattern of errors showcases intriguing alternative hy-
potheses that participants adopted. Some errors were sug-
gestive of inductive biases and assumptions that people bring
to the learning task—principles that are reasonable a priori
and consistent with some but not all of the provided demon-
strations. For instance, many errors can be characterized by
a bias we term “one-to-one,” the assumption that each input

1The number of participants varies since data was included on
the basis of passing the study phase. For comparison, the overall
accuracy with no exclusions at all was 72.0%.

Study instructions Test instructions

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 1

88%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 3

86%

86%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 2

88%

79%

●●●●
●●●●
●●●●
●●●●●●
●●●●●●

Training examples

zup fep kiki lug

wif kiki zup fep

lug kiki wif blicket zup

zup blicket wif kiki dax fep

zup blicket zup kiki zup fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function compositions

85%

65%

70%

75%

85%

Figure 2: Few-shot learning of instructions in Exp. 1. Participants learned to execute instructions in a novel language of pseudowords by
producing sequences of colored circles. Generalization performance is shown next to each test instruction, as the percent correct across
participants. The pseudowords and colors were randomized for each participant; the figure illustrates an example of such an assignment.

presented in random order.
We used several strategies to ensure that our participants

were paying attention. First, before the experiment, partici-
pants practiced using the response interface and had to pass
an instructions quiz; they cycled through the quiz until they
passed it. Second, catch trials were included during the test
phases, probing the study items rather than new items, with
the answers clearly presented on the screen above. There was
one catch trial per stage (except the last stage had two); a par-
ticipants’ test data was excluded if the participant missed two
or more catch trials (n = 5). Finally, test phases were also
excluded if the corresponding study phases were not passed
in the allotted time (13% of remaining data).

Recurrent neural networks. Standard sequence-to-
sequence recurrent neural networks (RNNs; Fig. 1) failed
to generalize from the study set to the test set. RNNs were
trained using supervised learning on the 14 study instructions
and evaluated on the test instructions (Fig. 2), using the
best overall architecture from Lake and Baroni (2018) on
the related SCAN benchmark (2-layer LSTM encoder and
decoder, 200 hidden units per layer, a dropout probability
of 0.5, no attention). This network (Fig. 1) consists of two
neural networks working together: an encoder RNN that
processes the instruction and embeds it as a vector, and a
decoder RNN that decodes this vector as a sequence of output
symbols. Another top architecture from Lake and Baroni
was also evaluated (1-layer LSTM encoder and decoder, 100
hidden units per layer, dropout 0.1, with attention). The
training setup mimicked Lake and Baroni but with 10,000
instruction presentations, corresponding to about 700 passes
through the training data (epochs). Several variants of the
architectures were also trained, repeatedly reducing the
number of hidden units by half until there were only three
hidden units per layer. Averaged across five random seeds,
no architecture generalized better than 2.5% correct on the

test instructions, confirming Lake and Baroni’s conclusion
that seq2seq RNNs struggle with few-shot learning and
systematic generalization.

Results. Human participants showed an impressive ability
to learn functions from limited experience and generalize to
novel inputs, as summarized in Fig. 2. In the first three
stages, performance was measured separately for each func-
tional term after exclusions through the above attention cri-
teria. Average performance across participants was 84.3%
correct (n = 25), counting sequences as correct only if every
output symbol was correct. Measured for individual func-
tions, accuracy was 88.0% (n = 25) for Function 1, 83.3%
(n = 24) for Function 2, and 86.4% (n = 22) for Function 3.1

Participants were also able to compose functions together
to interpret novel sequences of instructions. In the final stage,
accuracy on complex instructions was 76.0% (n = 20). Peo-
ple could generalize to longer and more complex instructions
than previously observed, an ability that seq2seq neural net-
works particularly struggle with (Lake & Baroni, 2018). Dur-
ing the study phase, the most complex instruction consisted
of five input pseudowords requiring two function composi-
tions, producing four output symbols. At test, most partici-
pants could successfully go beyond this, correctly processing
six input pseudowords requiring three function compositions,
producing six output symbols (72.5% correct).

The pattern of errors showcases intriguing alternative hy-
potheses that participants adopted. Some errors were sug-
gestive of inductive biases and assumptions that people bring
to the learning task—principles that are reasonable a priori
and consistent with some but not all of the provided demon-
strations. For instance, many errors can be characterized by
a bias we term “one-to-one,” the assumption that each input

1The number of participants varies since data was included on
the basis of passing the study phase. For comparison, the overall
accuracy with no exclusions at all was 72.0%.

Study instructions Test instructions

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 1

88%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 3

86%

86%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 2

88%

79%

●●●●
●●●●
●●●●
●●●●●●
●●●●●●

Training examples

zup fep kiki lug

wif kiki zup fep

lug kiki wif blicket zup

zup blicket wif kiki dax fep

zup blicket zup kiki zup fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function compositions

85%

65%

70%

75%

85%

Figure 2: Few-shot learning of instructions in Exp. 1. Participants learned to execute instructions in a novel language of pseudowords by
producing sequences of colored circles. Generalization performance is shown next to each test instruction, as the percent correct across
participants. The pseudowords and colors were randomized for each participant; the figure illustrates an example of such an assignment.

presented in random order.
We used several strategies to ensure that our participants

were paying attention. First, before the experiment, partici-
pants practiced using the response interface and had to pass
an instructions quiz; they cycled through the quiz until they
passed it. Second, catch trials were included during the test
phases, probing the study items rather than new items, with
the answers clearly presented on the screen above. There was
one catch trial per stage (except the last stage had two); a par-
ticipants’ test data was excluded if the participant missed two
or more catch trials (n = 5). Finally, test phases were also
excluded if the corresponding study phases were not passed
in the allotted time (13% of remaining data).

Recurrent neural networks. Standard sequence-to-
sequence recurrent neural networks (RNNs; Fig. 1) failed
to generalize from the study set to the test set. RNNs were
trained using supervised learning on the 14 study instructions
and evaluated on the test instructions (Fig. 2), using the
best overall architecture from Lake and Baroni (2018) on
the related SCAN benchmark (2-layer LSTM encoder and
decoder, 200 hidden units per layer, a dropout probability
of 0.5, no attention). This network (Fig. 1) consists of two
neural networks working together: an encoder RNN that
processes the instruction and embeds it as a vector, and a
decoder RNN that decodes this vector as a sequence of output
symbols. Another top architecture from Lake and Baroni
was also evaluated (1-layer LSTM encoder and decoder, 100
hidden units per layer, dropout 0.1, with attention). The
training setup mimicked Lake and Baroni but with 10,000
instruction presentations, corresponding to about 700 passes
through the training data (epochs). Several variants of the
architectures were also trained, repeatedly reducing the
number of hidden units by half until there were only three
hidden units per layer. Averaged across five random seeds,
no architecture generalized better than 2.5% correct on the

test instructions, confirming Lake and Baroni’s conclusion
that seq2seq RNNs struggle with few-shot learning and
systematic generalization.

Results. Human participants showed an impressive ability
to learn functions from limited experience and generalize to
novel inputs, as summarized in Fig. 2. In the first three
stages, performance was measured separately for each func-
tional term after exclusions through the above attention cri-
teria. Average performance across participants was 84.3%
correct (n = 25), counting sequences as correct only if every
output symbol was correct. Measured for individual func-
tions, accuracy was 88.0% (n = 25) for Function 1, 83.3%
(n = 24) for Function 2, and 86.4% (n = 22) for Function 3.1

Participants were also able to compose functions together
to interpret novel sequences of instructions. In the final stage,
accuracy on complex instructions was 76.0% (n = 20). Peo-
ple could generalize to longer and more complex instructions
than previously observed, an ability that seq2seq neural net-
works particularly struggle with (Lake & Baroni, 2018). Dur-
ing the study phase, the most complex instruction consisted
of five input pseudowords requiring two function composi-
tions, producing four output symbols. At test, most partici-
pants could successfully go beyond this, correctly processing
six input pseudowords requiring three function compositions,
producing six output symbols (72.5% correct).

The pattern of errors showcases intriguing alternative hy-
potheses that participants adopted. Some errors were sug-
gestive of inductive biases and assumptions that people bring
to the learning task—principles that are reasonable a priori
and consistent with some but not all of the provided demon-
strations. For instance, many errors can be characterized by
a bias we term “one-to-one,” the assumption that each input

1The number of participants varies since data was included on
the basis of passing the study phase. For comparison, the overall
accuracy with no exclusions at all was 72.0%.

Study instructions Test instructions

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 1

88%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 3

86%

86%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 2

88%

79%

●●●●
●●●●
●●●●
●●●●●●
●●●●●●

Training examples

zup fep kiki lug

wif kiki zup fep

lug kiki wif blicket zup

zup blicket wif kiki dax fep

zup blicket zup kiki zup fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function compositions

85%

65%

70%

75%

85%

Figure 2: Few-shot learning of instructions in Exp. 1. Participants learned to execute instructions in a novel language of pseudowords by
producing sequences of colored circles. Generalization performance is shown next to each test instruction, as the percent correct across
participants. The pseudowords and colors were randomized for each participant; the figure illustrates an example of such an assignment.

presented in random order.
We used several strategies to ensure that our participants

were paying attention. First, before the experiment, partici-
pants practiced using the response interface and had to pass
an instructions quiz; they cycled through the quiz until they
passed it. Second, catch trials were included during the test
phases, probing the study items rather than new items, with
the answers clearly presented on the screen above. There was
one catch trial per stage (except the last stage had two); a par-
ticipants’ test data was excluded if the participant missed two
or more catch trials (n = 5). Finally, test phases were also
excluded if the corresponding study phases were not passed
in the allotted time (13% of remaining data).

Recurrent neural networks. Standard sequence-to-
sequence recurrent neural networks (RNNs; Fig. 1) failed
to generalize from the study set to the test set. RNNs were
trained using supervised learning on the 14 study instructions
and evaluated on the test instructions (Fig. 2), using the
best overall architecture from Lake and Baroni (2018) on
the related SCAN benchmark (2-layer LSTM encoder and
decoder, 200 hidden units per layer, a dropout probability
of 0.5, no attention). This network (Fig. 1) consists of two
neural networks working together: an encoder RNN that
processes the instruction and embeds it as a vector, and a
decoder RNN that decodes this vector as a sequence of output
symbols. Another top architecture from Lake and Baroni
was also evaluated (1-layer LSTM encoder and decoder, 100
hidden units per layer, dropout 0.1, with attention). The
training setup mimicked Lake and Baroni but with 10,000
instruction presentations, corresponding to about 700 passes
through the training data (epochs). Several variants of the
architectures were also trained, repeatedly reducing the
number of hidden units by half until there were only three
hidden units per layer. Averaged across five random seeds,
no architecture generalized better than 2.5% correct on the

test instructions, confirming Lake and Baroni’s conclusion
that seq2seq RNNs struggle with few-shot learning and
systematic generalization.

Results. Human participants showed an impressive ability
to learn functions from limited experience and generalize to
novel inputs, as summarized in Fig. 2. In the first three
stages, performance was measured separately for each func-
tional term after exclusions through the above attention cri-
teria. Average performance across participants was 84.3%
correct (n = 25), counting sequences as correct only if every
output symbol was correct. Measured for individual func-
tions, accuracy was 88.0% (n = 25) for Function 1, 83.3%
(n = 24) for Function 2, and 86.4% (n = 22) for Function 3.1

Participants were also able to compose functions together
to interpret novel sequences of instructions. In the final stage,
accuracy on complex instructions was 76.0% (n = 20). Peo-
ple could generalize to longer and more complex instructions
than previously observed, an ability that seq2seq neural net-
works particularly struggle with (Lake & Baroni, 2018). Dur-
ing the study phase, the most complex instruction consisted
of five input pseudowords requiring two function composi-
tions, producing four output symbols. At test, most partici-
pants could successfully go beyond this, correctly processing
six input pseudowords requiring three function compositions,
producing six output symbols (72.5% correct).

The pattern of errors showcases intriguing alternative hy-
potheses that participants adopted. Some errors were sug-
gestive of inductive biases and assumptions that people bring
to the learning task—principles that are reasonable a priori
and consistent with some but not all of the provided demon-
strations. For instance, many errors can be characterized by
a bias we term “one-to-one,” the assumption that each input

1The number of participants varies since data was included on
the basis of passing the study phase. For comparison, the overall
accuracy with no exclusions at all was 72.0%.

Study instructions Test instructions

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 1

88%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 3

86%

86%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 2

88%

79%

●●●●
●●●●
●●●●
●●●●●●
●●●●●●

Training examples

zup fep kiki lug

wif kiki zup fep

lug kiki wif blicket zup

zup blicket wif kiki dax fep

zup blicket zup kiki zup fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function compositions

85%

65%

70%

75%

85%

Figure 2: Few-shot learning of instructions in Exp. 1. Participants learned to execute instructions in a novel language of pseudowords by
producing sequences of colored circles. Generalization performance is shown next to each test instruction, as the percent correct across
participants. The pseudowords and colors were randomized for each participant; the figure illustrates an example of such an assignment.

presented in random order.
We used several strategies to ensure that our participants

were paying attention. First, before the experiment, partici-
pants practiced using the response interface and had to pass
an instructions quiz; they cycled through the quiz until they
passed it. Second, catch trials were included during the test
phases, probing the study items rather than new items, with
the answers clearly presented on the screen above. There was
one catch trial per stage (except the last stage had two); a par-
ticipants’ test data was excluded if the participant missed two
or more catch trials (n = 5). Finally, test phases were also
excluded if the corresponding study phases were not passed
in the allotted time (13% of remaining data).

Recurrent neural networks. Standard sequence-to-
sequence recurrent neural networks (RNNs; Fig. 1) failed
to generalize from the study set to the test set. RNNs were
trained using supervised learning on the 14 study instructions
and evaluated on the test instructions (Fig. 2), using the
best overall architecture from Lake and Baroni (2018) on
the related SCAN benchmark (2-layer LSTM encoder and
decoder, 200 hidden units per layer, a dropout probability
of 0.5, no attention). This network (Fig. 1) consists of two
neural networks working together: an encoder RNN that
processes the instruction and embeds it as a vector, and a
decoder RNN that decodes this vector as a sequence of output
symbols. Another top architecture from Lake and Baroni
was also evaluated (1-layer LSTM encoder and decoder, 100
hidden units per layer, dropout 0.1, with attention). The
training setup mimicked Lake and Baroni but with 10,000
instruction presentations, corresponding to about 700 passes
through the training data (epochs). Several variants of the
architectures were also trained, repeatedly reducing the
number of hidden units by half until there were only three
hidden units per layer. Averaged across five random seeds,
no architecture generalized better than 2.5% correct on the

test instructions, confirming Lake and Baroni’s conclusion
that seq2seq RNNs struggle with few-shot learning and
systematic generalization.

Results. Human participants showed an impressive ability
to learn functions from limited experience and generalize to
novel inputs, as summarized in Fig. 2. In the first three
stages, performance was measured separately for each func-
tional term after exclusions through the above attention cri-
teria. Average performance across participants was 84.3%
correct (n = 25), counting sequences as correct only if every
output symbol was correct. Measured for individual func-
tions, accuracy was 88.0% (n = 25) for Function 1, 83.3%
(n = 24) for Function 2, and 86.4% (n = 22) for Function 3.1

Participants were also able to compose functions together
to interpret novel sequences of instructions. In the final stage,
accuracy on complex instructions was 76.0% (n = 20). Peo-
ple could generalize to longer and more complex instructions
than previously observed, an ability that seq2seq neural net-
works particularly struggle with (Lake & Baroni, 2018). Dur-
ing the study phase, the most complex instruction consisted
of five input pseudowords requiring two function composi-
tions, producing four output symbols. At test, most partici-
pants could successfully go beyond this, correctly processing
six input pseudowords requiring three function compositions,
producing six output symbols (72.5% correct).

The pattern of errors showcases intriguing alternative hy-
potheses that participants adopted. Some errors were sug-
gestive of inductive biases and assumptions that people bring
to the learning task—principles that are reasonable a priori
and consistent with some but not all of the provided demon-
strations. For instance, many errors can be characterized by
a bias we term “one-to-one,” the assumption that each input

1The number of participants varies since data was included on
the basis of passing the study phase. For comparison, the overall
accuracy with no exclusions at all was 72.0%.

Study instructions Test instructions

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 1

88%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 3

86%

86%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 2

88%

79%

●●●●
●●●●
●●●●
●●●●●●
●●●●●●

Training examples

zup fep kiki lug

wif kiki zup fep

lug kiki wif blicket zup

zup blicket wif kiki dax fep

zup blicket zup kiki zup fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function compositions

85%

65%

70%

75%

85%

Figure 2: Few-shot learning of instructions in Exp. 1. Participants learned to execute instructions in a novel language of pseudowords by
producing sequences of colored circles. Generalization performance is shown next to each test instruction, as the percent correct across
participants. The pseudowords and colors were randomized for each participant; the figure illustrates an example of such an assignment.

presented in random order.
We used several strategies to ensure that our participants

were paying attention. First, before the experiment, partici-
pants practiced using the response interface and had to pass
an instructions quiz; they cycled through the quiz until they
passed it. Second, catch trials were included during the test
phases, probing the study items rather than new items, with
the answers clearly presented on the screen above. There was
one catch trial per stage (except the last stage had two); a par-
ticipants’ test data was excluded if the participant missed two
or more catch trials (n = 5). Finally, test phases were also
excluded if the corresponding study phases were not passed
in the allotted time (13% of remaining data).

Recurrent neural networks. Standard sequence-to-
sequence recurrent neural networks (RNNs; Fig. 1) failed
to generalize from the study set to the test set. RNNs were
trained using supervised learning on the 14 study instructions
and evaluated on the test instructions (Fig. 2), using the
best overall architecture from Lake and Baroni (2018) on
the related SCAN benchmark (2-layer LSTM encoder and
decoder, 200 hidden units per layer, a dropout probability
of 0.5, no attention). This network (Fig. 1) consists of two
neural networks working together: an encoder RNN that
processes the instruction and embeds it as a vector, and a
decoder RNN that decodes this vector as a sequence of output
symbols. Another top architecture from Lake and Baroni
was also evaluated (1-layer LSTM encoder and decoder, 100
hidden units per layer, dropout 0.1, with attention). The
training setup mimicked Lake and Baroni but with 10,000
instruction presentations, corresponding to about 700 passes
through the training data (epochs). Several variants of the
architectures were also trained, repeatedly reducing the
number of hidden units by half until there were only three
hidden units per layer. Averaged across five random seeds,
no architecture generalized better than 2.5% correct on the

test instructions, confirming Lake and Baroni’s conclusion
that seq2seq RNNs struggle with few-shot learning and
systematic generalization.

Results. Human participants showed an impressive ability
to learn functions from limited experience and generalize to
novel inputs, as summarized in Fig. 2. In the first three
stages, performance was measured separately for each func-
tional term after exclusions through the above attention cri-
teria. Average performance across participants was 84.3%
correct (n = 25), counting sequences as correct only if every
output symbol was correct. Measured for individual func-
tions, accuracy was 88.0% (n = 25) for Function 1, 83.3%
(n = 24) for Function 2, and 86.4% (n = 22) for Function 3.1

Participants were also able to compose functions together
to interpret novel sequences of instructions. In the final stage,
accuracy on complex instructions was 76.0% (n = 20). Peo-
ple could generalize to longer and more complex instructions
than previously observed, an ability that seq2seq neural net-
works particularly struggle with (Lake & Baroni, 2018). Dur-
ing the study phase, the most complex instruction consisted
of five input pseudowords requiring two function composi-
tions, producing four output symbols. At test, most partici-
pants could successfully go beyond this, correctly processing
six input pseudowords requiring three function compositions,
producing six output symbols (72.5% correct).

The pattern of errors showcases intriguing alternative hy-
potheses that participants adopted. Some errors were sug-
gestive of inductive biases and assumptions that people bring
to the learning task—principles that are reasonable a priori
and consistent with some but not all of the provided demon-
strations. For instance, many errors can be characterized by
a bias we term “one-to-one,” the assumption that each input

1The number of participants varies since data was included on
the basis of passing the study phase. For comparison, the overall
accuracy with no exclusions at all was 72.0%.

Support

Query

Responses
(abstract outputs)

Instructions
(pseudowords)

Study instructions Test instructions

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 1

88%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 3

86%

86%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 2

88%

79%

●●●●
●●●●
●●●●
●●●●●●
●●●●●●

Training examples

zup fep kiki lug

wif kiki zup fep

lug kiki wif blicket zup

zup blicket wif kiki dax fep

zup blicket zup kiki zup fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function compositions

85%

65%

70%

75%

85%

Figure 2: Few-shot learning of instructions in Exp. 1. Participants learned to execute instructions in a novel language of pseudowords by
producing sequences of colored circles. Generalization performance is shown next to each test instruction, as the percent correct across
participants. The pseudowords and colors were randomized for each participant; the figure illustrates an example of such an assignment.

presented in random order.
We used several strategies to ensure that our participants

were paying attention. First, before the experiment, partici-
pants practiced using the response interface and had to pass
an instructions quiz; they cycled through the quiz until they
passed it. Second, catch trials were included during the test
phases, probing the study items rather than new items, with
the answers clearly presented on the screen above. There was
one catch trial per stage (except the last stage had two); a par-
ticipants’ test data was excluded if the participant missed two
or more catch trials (n = 5). Finally, test phases were also
excluded if the corresponding study phases were not passed
in the allotted time (13% of remaining data).

Recurrent neural networks. Standard sequence-to-
sequence recurrent neural networks (RNNs; Fig. 1) failed
to generalize from the study set to the test set. RNNs were
trained using supervised learning on the 14 study instructions
and evaluated on the test instructions (Fig. 2), using the
best overall architecture from Lake and Baroni (2018) on
the related SCAN benchmark (2-layer LSTM encoder and
decoder, 200 hidden units per layer, a dropout probability
of 0.5, no attention). This network (Fig. 1) consists of two
neural networks working together: an encoder RNN that
processes the instruction and embeds it as a vector, and a
decoder RNN that decodes this vector as a sequence of output
symbols. Another top architecture from Lake and Baroni
was also evaluated (1-layer LSTM encoder and decoder, 100
hidden units per layer, dropout 0.1, with attention). The
training setup mimicked Lake and Baroni but with 10,000
instruction presentations, corresponding to about 700 passes
through the training data (epochs). Several variants of the
architectures were also trained, repeatedly reducing the
number of hidden units by half until there were only three
hidden units per layer. Averaged across five random seeds,
no architecture generalized better than 2.5% correct on the

test instructions, confirming Lake and Baroni’s conclusion
that seq2seq RNNs struggle with few-shot learning and
systematic generalization.

Results. Human participants showed an impressive ability
to learn functions from limited experience and generalize to
novel inputs, as summarized in Fig. 2. In the first three
stages, performance was measured separately for each func-
tional term after exclusions through the above attention cri-
teria. Average performance across participants was 84.3%
correct (n = 25), counting sequences as correct only if every
output symbol was correct. Measured for individual func-
tions, accuracy was 88.0% (n = 25) for Function 1, 83.3%
(n = 24) for Function 2, and 86.4% (n = 22) for Function 3.1

Participants were also able to compose functions together
to interpret novel sequences of instructions. In the final stage,
accuracy on complex instructions was 76.0% (n = 20). Peo-
ple could generalize to longer and more complex instructions
than previously observed, an ability that seq2seq neural net-
works particularly struggle with (Lake & Baroni, 2018). Dur-
ing the study phase, the most complex instruction consisted
of five input pseudowords requiring two function composi-
tions, producing four output symbols. At test, most partici-
pants could successfully go beyond this, correctly processing
six input pseudowords requiring three function compositions,
producing six output symbols (72.5% correct).

The pattern of errors showcases intriguing alternative hy-
potheses that participants adopted. Some errors were sug-
gestive of inductive biases and assumptions that people bring
to the learning task—principles that are reasonable a priori
and consistent with some but not all of the provided demon-
strations. For instance, many errors can be characterized by
a bias we term “one-to-one,” the assumption that each input

1The number of participants varies since data was included on
the basis of passing the study phase. For comparison, the overall
accuracy with no exclusions at all was 72.0%.

?

A test of systematicity for humans and machines

Study instructions Test instructions

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 1

88%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 3

86%

86%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 2

88%

79%

●●●●
●●●●
●●●●
●●●●●●
●●●●●●

Training examples

zup fep kiki lug

wif kiki zup fep

lug kiki wif blicket zup

zup blicket wif kiki dax fep

zup blicket zup kiki zup fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function compositions

85%

65%

70%

75%

85%

Figure 2: Few-shot learning of instructions in Exp. 1. Participants learned to execute instructions in a novel language of pseudowords by
producing sequences of colored circles. Generalization performance is shown next to each test instruction, as the percent correct across
participants. The pseudowords and colors were randomized for each participant; the figure illustrates an example of such an assignment.

presented in random order.
We used several strategies to ensure that our participants

were paying attention. First, before the experiment, partici-
pants practiced using the response interface and had to pass
an instructions quiz; they cycled through the quiz until they
passed it. Second, catch trials were included during the test
phases, probing the study items rather than new items, with
the answers clearly presented on the screen above. There was
one catch trial per stage (except the last stage had two); a par-
ticipants’ test data was excluded if the participant missed two
or more catch trials (n = 5). Finally, test phases were also
excluded if the corresponding study phases were not passed
in the allotted time (13% of remaining data).

Recurrent neural networks. Standard sequence-to-
sequence recurrent neural networks (RNNs; Fig. 1) failed
to generalize from the study set to the test set. RNNs were
trained using supervised learning on the 14 study instructions
and evaluated on the test instructions (Fig. 2), using the
best overall architecture from Lake and Baroni (2018) on
the related SCAN benchmark (2-layer LSTM encoder and
decoder, 200 hidden units per layer, a dropout probability
of 0.5, no attention). This network (Fig. 1) consists of two
neural networks working together: an encoder RNN that
processes the instruction and embeds it as a vector, and a
decoder RNN that decodes this vector as a sequence of output
symbols. Another top architecture from Lake and Baroni
was also evaluated (1-layer LSTM encoder and decoder, 100
hidden units per layer, dropout 0.1, with attention). The
training setup mimicked Lake and Baroni but with 10,000
instruction presentations, corresponding to about 700 passes
through the training data (epochs). Several variants of the
architectures were also trained, repeatedly reducing the
number of hidden units by half until there were only three
hidden units per layer. Averaged across five random seeds,
no architecture generalized better than 2.5% correct on the

test instructions, confirming Lake and Baroni’s conclusion
that seq2seq RNNs struggle with few-shot learning and
systematic generalization.

Results. Human participants showed an impressive ability
to learn functions from limited experience and generalize to
novel inputs, as summarized in Fig. 2. In the first three
stages, performance was measured separately for each func-
tional term after exclusions through the above attention cri-
teria. Average performance across participants was 84.3%
correct (n = 25), counting sequences as correct only if every
output symbol was correct. Measured for individual func-
tions, accuracy was 88.0% (n = 25) for Function 1, 83.3%
(n = 24) for Function 2, and 86.4% (n = 22) for Function 3.1

Participants were also able to compose functions together
to interpret novel sequences of instructions. In the final stage,
accuracy on complex instructions was 76.0% (n = 20). Peo-
ple could generalize to longer and more complex instructions
than previously observed, an ability that seq2seq neural net-
works particularly struggle with (Lake & Baroni, 2018). Dur-
ing the study phase, the most complex instruction consisted
of five input pseudowords requiring two function composi-
tions, producing four output symbols. At test, most partici-
pants could successfully go beyond this, correctly processing
six input pseudowords requiring three function compositions,
producing six output symbols (72.5% correct).

The pattern of errors showcases intriguing alternative hy-
potheses that participants adopted. Some errors were sug-
gestive of inductive biases and assumptions that people bring
to the learning task—principles that are reasonable a priori
and consistent with some but not all of the provided demon-
strations. For instance, many errors can be characterized by
a bias we term “one-to-one,” the assumption that each input

1The number of participants varies since data was included on
the basis of passing the study phase. For comparison, the overall
accuracy with no exclusions at all was 72.0%.

Study instructions Test instructions

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 1

88%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 3

86%

86%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 2

88%

79%

●●●●
●●●●
●●●●
●●●●●●
●●●●●●

Training examples

zup fep kiki lug

wif kiki zup fep

lug kiki wif blicket zup

zup blicket wif kiki dax fep

zup blicket zup kiki zup fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function compositions

85%

65%

70%

75%

85%

Figure 2: Few-shot learning of instructions in Exp. 1. Participants learned to execute instructions in a novel language of pseudowords by
producing sequences of colored circles. Generalization performance is shown next to each test instruction, as the percent correct across
participants. The pseudowords and colors were randomized for each participant; the figure illustrates an example of such an assignment.

presented in random order.
We used several strategies to ensure that our participants

were paying attention. First, before the experiment, partici-
pants practiced using the response interface and had to pass
an instructions quiz; they cycled through the quiz until they
passed it. Second, catch trials were included during the test
phases, probing the study items rather than new items, with
the answers clearly presented on the screen above. There was
one catch trial per stage (except the last stage had two); a par-
ticipants’ test data was excluded if the participant missed two
or more catch trials (n = 5). Finally, test phases were also
excluded if the corresponding study phases were not passed
in the allotted time (13% of remaining data).

Recurrent neural networks. Standard sequence-to-
sequence recurrent neural networks (RNNs; Fig. 1) failed
to generalize from the study set to the test set. RNNs were
trained using supervised learning on the 14 study instructions
and evaluated on the test instructions (Fig. 2), using the
best overall architecture from Lake and Baroni (2018) on
the related SCAN benchmark (2-layer LSTM encoder and
decoder, 200 hidden units per layer, a dropout probability
of 0.5, no attention). This network (Fig. 1) consists of two
neural networks working together: an encoder RNN that
processes the instruction and embeds it as a vector, and a
decoder RNN that decodes this vector as a sequence of output
symbols. Another top architecture from Lake and Baroni
was also evaluated (1-layer LSTM encoder and decoder, 100
hidden units per layer, dropout 0.1, with attention). The
training setup mimicked Lake and Baroni but with 10,000
instruction presentations, corresponding to about 700 passes
through the training data (epochs). Several variants of the
architectures were also trained, repeatedly reducing the
number of hidden units by half until there were only three
hidden units per layer. Averaged across five random seeds,
no architecture generalized better than 2.5% correct on the

test instructions, confirming Lake and Baroni’s conclusion
that seq2seq RNNs struggle with few-shot learning and
systematic generalization.

Results. Human participants showed an impressive ability
to learn functions from limited experience and generalize to
novel inputs, as summarized in Fig. 2. In the first three
stages, performance was measured separately for each func-
tional term after exclusions through the above attention cri-
teria. Average performance across participants was 84.3%
correct (n = 25), counting sequences as correct only if every
output symbol was correct. Measured for individual func-
tions, accuracy was 88.0% (n = 25) for Function 1, 83.3%
(n = 24) for Function 2, and 86.4% (n = 22) for Function 3.1

Participants were also able to compose functions together
to interpret novel sequences of instructions. In the final stage,
accuracy on complex instructions was 76.0% (n = 20). Peo-
ple could generalize to longer and more complex instructions
than previously observed, an ability that seq2seq neural net-
works particularly struggle with (Lake & Baroni, 2018). Dur-
ing the study phase, the most complex instruction consisted
of five input pseudowords requiring two function composi-
tions, producing four output symbols. At test, most partici-
pants could successfully go beyond this, correctly processing
six input pseudowords requiring three function compositions,
producing six output symbols (72.5% correct).

The pattern of errors showcases intriguing alternative hy-
potheses that participants adopted. Some errors were sug-
gestive of inductive biases and assumptions that people bring
to the learning task—principles that are reasonable a priori
and consistent with some but not all of the provided demon-
strations. For instance, many errors can be characterized by
a bias we term “one-to-one,” the assumption that each input

1The number of participants varies since data was included on
the basis of passing the study phase. For comparison, the overall
accuracy with no exclusions at all was 72.0%.

Study instructions Test instructions

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 1

88%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 3

86%

86%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 2

88%

79%

●●●●
●●●●
●●●●
●●●●●●
●●●●●●

Training examples

zup fep kiki lug

wif kiki zup fep

lug kiki wif blicket zup

zup blicket wif kiki dax fep

zup blicket zup kiki zup fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function compositions

85%

65%

70%

75%

85%

Figure 2: Few-shot learning of instructions in Exp. 1. Participants learned to execute instructions in a novel language of pseudowords by
producing sequences of colored circles. Generalization performance is shown next to each test instruction, as the percent correct across
participants. The pseudowords and colors were randomized for each participant; the figure illustrates an example of such an assignment.

presented in random order.
We used several strategies to ensure that our participants

were paying attention. First, before the experiment, partici-
pants practiced using the response interface and had to pass
an instructions quiz; they cycled through the quiz until they
passed it. Second, catch trials were included during the test
phases, probing the study items rather than new items, with
the answers clearly presented on the screen above. There was
one catch trial per stage (except the last stage had two); a par-
ticipants’ test data was excluded if the participant missed two
or more catch trials (n = 5). Finally, test phases were also
excluded if the corresponding study phases were not passed
in the allotted time (13% of remaining data).

Recurrent neural networks. Standard sequence-to-
sequence recurrent neural networks (RNNs; Fig. 1) failed
to generalize from the study set to the test set. RNNs were
trained using supervised learning on the 14 study instructions
and evaluated on the test instructions (Fig. 2), using the
best overall architecture from Lake and Baroni (2018) on
the related SCAN benchmark (2-layer LSTM encoder and
decoder, 200 hidden units per layer, a dropout probability
of 0.5, no attention). This network (Fig. 1) consists of two
neural networks working together: an encoder RNN that
processes the instruction and embeds it as a vector, and a
decoder RNN that decodes this vector as a sequence of output
symbols. Another top architecture from Lake and Baroni
was also evaluated (1-layer LSTM encoder and decoder, 100
hidden units per layer, dropout 0.1, with attention). The
training setup mimicked Lake and Baroni but with 10,000
instruction presentations, corresponding to about 700 passes
through the training data (epochs). Several variants of the
architectures were also trained, repeatedly reducing the
number of hidden units by half until there were only three
hidden units per layer. Averaged across five random seeds,
no architecture generalized better than 2.5% correct on the

test instructions, confirming Lake and Baroni’s conclusion
that seq2seq RNNs struggle with few-shot learning and
systematic generalization.

Results. Human participants showed an impressive ability
to learn functions from limited experience and generalize to
novel inputs, as summarized in Fig. 2. In the first three
stages, performance was measured separately for each func-
tional term after exclusions through the above attention cri-
teria. Average performance across participants was 84.3%
correct (n = 25), counting sequences as correct only if every
output symbol was correct. Measured for individual func-
tions, accuracy was 88.0% (n = 25) for Function 1, 83.3%
(n = 24) for Function 2, and 86.4% (n = 22) for Function 3.1

Participants were also able to compose functions together
to interpret novel sequences of instructions. In the final stage,
accuracy on complex instructions was 76.0% (n = 20). Peo-
ple could generalize to longer and more complex instructions
than previously observed, an ability that seq2seq neural net-
works particularly struggle with (Lake & Baroni, 2018). Dur-
ing the study phase, the most complex instruction consisted
of five input pseudowords requiring two function composi-
tions, producing four output symbols. At test, most partici-
pants could successfully go beyond this, correctly processing
six input pseudowords requiring three function compositions,
producing six output symbols (72.5% correct).

The pattern of errors showcases intriguing alternative hy-
potheses that participants adopted. Some errors were sug-
gestive of inductive biases and assumptions that people bring
to the learning task—principles that are reasonable a priori
and consistent with some but not all of the provided demon-
strations. For instance, many errors can be characterized by
a bias we term “one-to-one,” the assumption that each input

1The number of participants varies since data was included on
the basis of passing the study phase. For comparison, the overall
accuracy with no exclusions at all was 72.0%.

Study instructions Test instructions

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 1

88%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 3

86%

86%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 2

88%

79%

●●●●
●●●●
●●●●
●●●●●●
●●●●●●

Training examples

zup fep kiki lug

wif kiki zup fep

lug kiki wif blicket zup

zup blicket wif kiki dax fep

zup blicket zup kiki zup fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function compositions

85%

65%

70%

75%

85%

Figure 2: Few-shot learning of instructions in Exp. 1. Participants learned to execute instructions in a novel language of pseudowords by
producing sequences of colored circles. Generalization performance is shown next to each test instruction, as the percent correct across
participants. The pseudowords and colors were randomized for each participant; the figure illustrates an example of such an assignment.

presented in random order.
We used several strategies to ensure that our participants

were paying attention. First, before the experiment, partici-
pants practiced using the response interface and had to pass
an instructions quiz; they cycled through the quiz until they
passed it. Second, catch trials were included during the test
phases, probing the study items rather than new items, with
the answers clearly presented on the screen above. There was
one catch trial per stage (except the last stage had two); a par-
ticipants’ test data was excluded if the participant missed two
or more catch trials (n = 5). Finally, test phases were also
excluded if the corresponding study phases were not passed
in the allotted time (13% of remaining data).

Recurrent neural networks. Standard sequence-to-
sequence recurrent neural networks (RNNs; Fig. 1) failed
to generalize from the study set to the test set. RNNs were
trained using supervised learning on the 14 study instructions
and evaluated on the test instructions (Fig. 2), using the
best overall architecture from Lake and Baroni (2018) on
the related SCAN benchmark (2-layer LSTM encoder and
decoder, 200 hidden units per layer, a dropout probability
of 0.5, no attention). This network (Fig. 1) consists of two
neural networks working together: an encoder RNN that
processes the instruction and embeds it as a vector, and a
decoder RNN that decodes this vector as a sequence of output
symbols. Another top architecture from Lake and Baroni
was also evaluated (1-layer LSTM encoder and decoder, 100
hidden units per layer, dropout 0.1, with attention). The
training setup mimicked Lake and Baroni but with 10,000
instruction presentations, corresponding to about 700 passes
through the training data (epochs). Several variants of the
architectures were also trained, repeatedly reducing the
number of hidden units by half until there were only three
hidden units per layer. Averaged across five random seeds,
no architecture generalized better than 2.5% correct on the

test instructions, confirming Lake and Baroni’s conclusion
that seq2seq RNNs struggle with few-shot learning and
systematic generalization.

Results. Human participants showed an impressive ability
to learn functions from limited experience and generalize to
novel inputs, as summarized in Fig. 2. In the first three
stages, performance was measured separately for each func-
tional term after exclusions through the above attention cri-
teria. Average performance across participants was 84.3%
correct (n = 25), counting sequences as correct only if every
output symbol was correct. Measured for individual func-
tions, accuracy was 88.0% (n = 25) for Function 1, 83.3%
(n = 24) for Function 2, and 86.4% (n = 22) for Function 3.1

Participants were also able to compose functions together
to interpret novel sequences of instructions. In the final stage,
accuracy on complex instructions was 76.0% (n = 20). Peo-
ple could generalize to longer and more complex instructions
than previously observed, an ability that seq2seq neural net-
works particularly struggle with (Lake & Baroni, 2018). Dur-
ing the study phase, the most complex instruction consisted
of five input pseudowords requiring two function composi-
tions, producing four output symbols. At test, most partici-
pants could successfully go beyond this, correctly processing
six input pseudowords requiring three function compositions,
producing six output symbols (72.5% correct).

The pattern of errors showcases intriguing alternative hy-
potheses that participants adopted. Some errors were sug-
gestive of inductive biases and assumptions that people bring
to the learning task—principles that are reasonable a priori
and consistent with some but not all of the provided demon-
strations. For instance, many errors can be characterized by
a bias we term “one-to-one,” the assumption that each input

1The number of participants varies since data was included on
the basis of passing the study phase. For comparison, the overall
accuracy with no exclusions at all was 72.0%.

Study instructions Test instructions

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 1

88%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 3

86%

86%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 2

88%

79%

●●●●
●●●●
●●●●
●●●●●●
●●●●●●

Training examples

zup fep kiki lug

wif kiki zup fep

lug kiki wif blicket zup

zup blicket wif kiki dax fep

zup blicket zup kiki zup fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function compositions

85%

65%

70%

75%

85%

Figure 2: Few-shot learning of instructions in Exp. 1. Participants learned to execute instructions in a novel language of pseudowords by
producing sequences of colored circles. Generalization performance is shown next to each test instruction, as the percent correct across
participants. The pseudowords and colors were randomized for each participant; the figure illustrates an example of such an assignment.

presented in random order.
We used several strategies to ensure that our participants

were paying attention. First, before the experiment, partici-
pants practiced using the response interface and had to pass
an instructions quiz; they cycled through the quiz until they
passed it. Second, catch trials were included during the test
phases, probing the study items rather than new items, with
the answers clearly presented on the screen above. There was
one catch trial per stage (except the last stage had two); a par-
ticipants’ test data was excluded if the participant missed two
or more catch trials (n = 5). Finally, test phases were also
excluded if the corresponding study phases were not passed
in the allotted time (13% of remaining data).

Recurrent neural networks. Standard sequence-to-
sequence recurrent neural networks (RNNs; Fig. 1) failed
to generalize from the study set to the test set. RNNs were
trained using supervised learning on the 14 study instructions
and evaluated on the test instructions (Fig. 2), using the
best overall architecture from Lake and Baroni (2018) on
the related SCAN benchmark (2-layer LSTM encoder and
decoder, 200 hidden units per layer, a dropout probability
of 0.5, no attention). This network (Fig. 1) consists of two
neural networks working together: an encoder RNN that
processes the instruction and embeds it as a vector, and a
decoder RNN that decodes this vector as a sequence of output
symbols. Another top architecture from Lake and Baroni
was also evaluated (1-layer LSTM encoder and decoder, 100
hidden units per layer, dropout 0.1, with attention). The
training setup mimicked Lake and Baroni but with 10,000
instruction presentations, corresponding to about 700 passes
through the training data (epochs). Several variants of the
architectures were also trained, repeatedly reducing the
number of hidden units by half until there were only three
hidden units per layer. Averaged across five random seeds,
no architecture generalized better than 2.5% correct on the

test instructions, confirming Lake and Baroni’s conclusion
that seq2seq RNNs struggle with few-shot learning and
systematic generalization.

Results. Human participants showed an impressive ability
to learn functions from limited experience and generalize to
novel inputs, as summarized in Fig. 2. In the first three
stages, performance was measured separately for each func-
tional term after exclusions through the above attention cri-
teria. Average performance across participants was 84.3%
correct (n = 25), counting sequences as correct only if every
output symbol was correct. Measured for individual func-
tions, accuracy was 88.0% (n = 25) for Function 1, 83.3%
(n = 24) for Function 2, and 86.4% (n = 22) for Function 3.1

Participants were also able to compose functions together
to interpret novel sequences of instructions. In the final stage,
accuracy on complex instructions was 76.0% (n = 20). Peo-
ple could generalize to longer and more complex instructions
than previously observed, an ability that seq2seq neural net-
works particularly struggle with (Lake & Baroni, 2018). Dur-
ing the study phase, the most complex instruction consisted
of five input pseudowords requiring two function composi-
tions, producing four output symbols. At test, most partici-
pants could successfully go beyond this, correctly processing
six input pseudowords requiring three function compositions,
producing six output symbols (72.5% correct).

The pattern of errors showcases intriguing alternative hy-
potheses that participants adopted. Some errors were sug-
gestive of inductive biases and assumptions that people bring
to the learning task—principles that are reasonable a priori
and consistent with some but not all of the provided demon-
strations. For instance, many errors can be characterized by
a bias we term “one-to-one,” the assumption that each input

1The number of participants varies since data was included on
the basis of passing the study phase. For comparison, the overall
accuracy with no exclusions at all was 72.0%.

Study instructions Test instructions

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 1

88%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 3

86%

86%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 2

88%

79%

●●●●
●●●●
●●●●
●●●●●●
●●●●●●

Training examples

zup fep kiki lug

wif kiki zup fep

lug kiki wif blicket zup

zup blicket wif kiki dax fep

zup blicket zup kiki zup fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function compositions

85%

65%

70%

75%

85%

Figure 2: Few-shot learning of instructions in Exp. 1. Participants learned to execute instructions in a novel language of pseudowords by
producing sequences of colored circles. Generalization performance is shown next to each test instruction, as the percent correct across
participants. The pseudowords and colors were randomized for each participant; the figure illustrates an example of such an assignment.

presented in random order.
We used several strategies to ensure that our participants

were paying attention. First, before the experiment, partici-
pants practiced using the response interface and had to pass
an instructions quiz; they cycled through the quiz until they
passed it. Second, catch trials were included during the test
phases, probing the study items rather than new items, with
the answers clearly presented on the screen above. There was
one catch trial per stage (except the last stage had two); a par-
ticipants’ test data was excluded if the participant missed two
or more catch trials (n = 5). Finally, test phases were also
excluded if the corresponding study phases were not passed
in the allotted time (13% of remaining data).

Recurrent neural networks. Standard sequence-to-
sequence recurrent neural networks (RNNs; Fig. 1) failed
to generalize from the study set to the test set. RNNs were
trained using supervised learning on the 14 study instructions
and evaluated on the test instructions (Fig. 2), using the
best overall architecture from Lake and Baroni (2018) on
the related SCAN benchmark (2-layer LSTM encoder and
decoder, 200 hidden units per layer, a dropout probability
of 0.5, no attention). This network (Fig. 1) consists of two
neural networks working together: an encoder RNN that
processes the instruction and embeds it as a vector, and a
decoder RNN that decodes this vector as a sequence of output
symbols. Another top architecture from Lake and Baroni
was also evaluated (1-layer LSTM encoder and decoder, 100
hidden units per layer, dropout 0.1, with attention). The
training setup mimicked Lake and Baroni but with 10,000
instruction presentations, corresponding to about 700 passes
through the training data (epochs). Several variants of the
architectures were also trained, repeatedly reducing the
number of hidden units by half until there were only three
hidden units per layer. Averaged across five random seeds,
no architecture generalized better than 2.5% correct on the

test instructions, confirming Lake and Baroni’s conclusion
that seq2seq RNNs struggle with few-shot learning and
systematic generalization.

Results. Human participants showed an impressive ability
to learn functions from limited experience and generalize to
novel inputs, as summarized in Fig. 2. In the first three
stages, performance was measured separately for each func-
tional term after exclusions through the above attention cri-
teria. Average performance across participants was 84.3%
correct (n = 25), counting sequences as correct only if every
output symbol was correct. Measured for individual func-
tions, accuracy was 88.0% (n = 25) for Function 1, 83.3%
(n = 24) for Function 2, and 86.4% (n = 22) for Function 3.1

Participants were also able to compose functions together
to interpret novel sequences of instructions. In the final stage,
accuracy on complex instructions was 76.0% (n = 20). Peo-
ple could generalize to longer and more complex instructions
than previously observed, an ability that seq2seq neural net-
works particularly struggle with (Lake & Baroni, 2018). Dur-
ing the study phase, the most complex instruction consisted
of five input pseudowords requiring two function composi-
tions, producing four output symbols. At test, most partici-
pants could successfully go beyond this, correctly processing
six input pseudowords requiring three function compositions,
producing six output symbols (72.5% correct).

The pattern of errors showcases intriguing alternative hy-
potheses that participants adopted. Some errors were sug-
gestive of inductive biases and assumptions that people bring
to the learning task—principles that are reasonable a priori
and consistent with some but not all of the provided demon-
strations. For instance, many errors can be characterized by
a bias we term “one-to-one,” the assumption that each input

1The number of participants varies since data was included on
the basis of passing the study phase. For comparison, the overall
accuracy with no exclusions at all was 72.0%.

Training

Test

Results: Learning “blicket”-surround

“dax blicket zup” “zup blicket lug”

●●●●●● ●●●

●●● ●●●

●●●

●●● ●●●

●●● ●●●

●●● ●●●

dax blicket zup (21) dax blicket zup (1)

dax blicket zup (1) dax blicket zup (1)

INPUT: zup blicket lug; OUTPUT: (target)

zup blicket lug (19) zup blicket lug (1)

zup blicket lug (1) zup blicket lug (1)

zup blicket lug (1) zup blicket lug (1)

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v...

2 of 2 10/24/18, 2:53 PM

●●●●●● ●●●

●●● ●●●

●●●

●●● ●●●

●●● ●●●

●●● ●●●

dax blicket zup (21) dax blicket zup (1)

dax blicket zup (1) dax blicket zup (1)

INPUT: zup blicket lug; OUTPUT: (target)

zup blicket lug (19) zup blicket lug (1)

zup blicket lug (1) zup blicket lug (1)

zup blicket lug (1) zup blicket lug (1)

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v...

2 of 2 10/24/18, 2:53 PM

●●●●●● ●●●

●●● ●●●

●●●

●●● ●●●

●●● ●●●

●●● ●●●

dax blicket zup (21) dax blicket zup (1)

dax blicket zup (1) dax blicket zup (1)

INPUT: zup blicket lug; OUTPUT: (target)

zup blicket lug (19) zup blicket lug (1)

zup blicket lug (1) zup blicket lug (1)

zup blicket lug (1) zup blicket lug (1)

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v...

2 of 2 10/24/18, 2:53 PM

Accuracy: 83% (n=24)

one-to-one

one-to-one

correct answer correct answer

one-to-one

one-to-one

one-to-one

Possible inductive bias: “one-to-one,” a preference that input symbols can be directly
translated one-by-one to output symbols, without complex function transformations

response frequency

Study instructions Test instructions

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 1

88%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 3

86%

86%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 2

88%

79%

●●●●
●●●●
●●●●
●●●●●●
●●●●●●

Training examples

zup fep kiki lug

wif kiki zup fep

lug kiki wif blicket zup

zup blicket wif kiki dax fep

zup blicket zup kiki zup fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function compositions

85%

65%

70%

75%

85%

Figure 2: Few-shot learning of instructions in Exp. 1. Participants learned to execute instructions in a novel language of pseudowords by
producing sequences of colored circles. Generalization performance is shown next to each test instruction, as the percent correct across
participants. The pseudowords and colors were randomized for each participant; the figure illustrates an example of such an assignment.

presented in random order.
We used several strategies to ensure that our participants

were paying attention. First, before the experiment, partici-
pants practiced using the response interface and had to pass
an instructions quiz; they cycled through the quiz until they
passed it. Second, catch trials were included during the test
phases, probing the study items rather than new items, with
the answers clearly presented on the screen above. There was
one catch trial per stage (except the last stage had two); a par-
ticipants’ test data was excluded if the participant missed two
or more catch trials (n = 5). Finally, test phases were also
excluded if the corresponding study phases were not passed
in the allotted time (13% of remaining data).

Recurrent neural networks. Standard sequence-to-
sequence recurrent neural networks (RNNs; Fig. 1) failed
to generalize from the study set to the test set. RNNs were
trained using supervised learning on the 14 study instructions
and evaluated on the test instructions (Fig. 2), using the
best overall architecture from Lake and Baroni (2018) on
the related SCAN benchmark (2-layer LSTM encoder and
decoder, 200 hidden units per layer, a dropout probability
of 0.5, no attention). This network (Fig. 1) consists of two
neural networks working together: an encoder RNN that
processes the instruction and embeds it as a vector, and a
decoder RNN that decodes this vector as a sequence of output
symbols. Another top architecture from Lake and Baroni
was also evaluated (1-layer LSTM encoder and decoder, 100
hidden units per layer, dropout 0.1, with attention). The
training setup mimicked Lake and Baroni but with 10,000
instruction presentations, corresponding to about 700 passes
through the training data (epochs). Several variants of the
architectures were also trained, repeatedly reducing the
number of hidden units by half until there were only three
hidden units per layer. Averaged across five random seeds,
no architecture generalized better than 2.5% correct on the

test instructions, confirming Lake and Baroni’s conclusion
that seq2seq RNNs struggle with few-shot learning and
systematic generalization.

Results. Human participants showed an impressive ability
to learn functions from limited experience and generalize to
novel inputs, as summarized in Fig. 2. In the first three
stages, performance was measured separately for each func-
tional term after exclusions through the above attention cri-
teria. Average performance across participants was 84.3%
correct (n = 25), counting sequences as correct only if every
output symbol was correct. Measured for individual func-
tions, accuracy was 88.0% (n = 25) for Function 1, 83.3%
(n = 24) for Function 2, and 86.4% (n = 22) for Function 3.1

Participants were also able to compose functions together
to interpret novel sequences of instructions. In the final stage,
accuracy on complex instructions was 76.0% (n = 20). Peo-
ple could generalize to longer and more complex instructions
than previously observed, an ability that seq2seq neural net-
works particularly struggle with (Lake & Baroni, 2018). Dur-
ing the study phase, the most complex instruction consisted
of five input pseudowords requiring two function composi-
tions, producing four output symbols. At test, most partici-
pants could successfully go beyond this, correctly processing
six input pseudowords requiring three function compositions,
producing six output symbols (72.5% correct).

The pattern of errors showcases intriguing alternative hy-
potheses that participants adopted. Some errors were sug-
gestive of inductive biases and assumptions that people bring
to the learning task—principles that are reasonable a priori
and consistent with some but not all of the provided demon-
strations. For instance, many errors can be characterized by
a bias we term “one-to-one,” the assumption that each input

1The number of participants varies since data was included on
the basis of passing the study phase. For comparison, the overall
accuracy with no exclusions at all was 72.0%.

?

Support

Query

A test of systematicity for humans and machines

Study instructions Test instructions

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 1

88%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 3

86%

86%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 2

88%

79%

●●●●
●●●●
●●●●
●●●●●●
●●●●●●

Training examples

zup fep kiki lug

wif kiki zup fep

lug kiki wif blicket zup

zup blicket wif kiki dax fep

zup blicket zup kiki zup fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function compositions

85%

65%

70%

75%

85%

Figure 1: Few-shot learning of instructions in Exp. 1. Participants learned to execute instructions in a novel language of pseudowords by
producing sequences of colored circles. Generalization performance is shown next to each test instruction. The pseudowords and colors were
randomized for each participant and a canonical assignment is shown here.

producing a sequence of abstract outputs (a sequence of col-
ored circles; Fig. 1). Some pseudowords are primitive in-
structions that correspond to a single output symbol, while
other pseudowords are functional terms that require process-
ing of argument items to construct the output. As in SCAN,
one primitive (“zup”) is presented only in isolation during
study and evaluated compositionally during test, appearing
in each test instruction. To perform well, participants must
learn the meaning of each function from just a small number
of demonstrations, and then generalize to new primitives and
more complex compositions than previously observed.

Stimuli. The instructions consisted of seven possible pseu-
dowords and the output sequences consisted of four possi-
ble response symbols (Fig. 1). Four primitive pseudowords
are direct mappings from one input word to one output sym-
bol (e.g., “dax” is “RED” and “wif” is “GREEN”), and the
other pseudowords are functional terms that take arguments.
To discourage a strategy based on word-to-word translation
into English, the functional terms could not be expressed by
single-word modifiers in English, and formed phrases whose
order would be unnatural in English. More specifically Func-
tion 1 (“fep” in Fig. 1) takes the preceding primitive as an ar-
gument and repeats its output three times (“dax fep” is “RED
RED RED”). Function 2 (“blicket”) takes both the preceding
primitive and following primitive as arguments, producing
their outputs in a specific alternating sequence (“wif blicket
dax” is “GREEN RED GREEN”). Last, Function 3 (“kiki”)
takes both the preceding and following strings as input, pro-
cesses them, and concatenates their outputs in reverse order
(“dax kiki lug” is “BLUE RED”). We also tested Function
3 in cases where its arguments were generated by the other
functions, exploring function composition (“wif blicket dax
kiki lug” is “BLUE GREEN RED GREEN”).

Methods. Thirty participants in the United States were re-
cruited using Amazon Mechanical Turk and the psiTurk plat-

form (Gureckis et al., 2015). Participants were informed that
the study related to how people learn input-output associa-
tions, and they would be asked to learn a set of commands
and their corresponding outputs. Learning proceeded in a
curriculum with four stages. In the first three stages, partic-
ipants learned individual functions from just two demonstra-
tions each (Functions 1 through 3; Fig. 1). In the final stage,
participants learned to interpret complex instructions by com-
bining these functions (Function compositions; Fig. 1).

Each stage had both a study phase and test phase. The
study phase presented participants with a set of study input-
output mappings. For the first three stages, the study instruc-
tions always included the four primitives and two examples
of the relevant function, presented together on the screen. For
the last stage, the entire set of study instructions was provided
together in order to probe composition. To facilitate compre-
hension, the output sequence for one of the study items was
covered and participants were asked to reproduce it, given
their memory and the other items on the screen. Corrective
feedback was provided, and participants cycled through all
non-primitive study items until all were produced correctly
or three cycles were completed. The test phase asked partic-
ipants to produce the outputs for novel instructions, with no
feedback provided. The study items remained on the screen
for reference, so that performance would reflect generaliza-
tion in the absence of memory limitations. The study and
test items always differed from one another by more than one
primitive substitution (except in the Function 1 stage, where a
single primitive was presented as novel argument to Function
1). Some test items also required reasoning beyond substitut-
ing variables, and in particular understanding longer compo-
sitions of functions than were seen in the study phase.

The response interface had a pool of possible output sym-
bols which could be clicked or dragged to the response array.
The circles could be rearranged within the array or cleared
with a reset button. The study and test set only used four

Support (training) Queries (test)
Study instructions Test instructions

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 1

88%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 3

86%

86%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 2

88%

79%

●●●●
●●●●
●●●●
●●●●●●
●●●●●●

Training examples

zup fep kiki lug

wif kiki zup fep

lug kiki wif blicket zup

zup blicket wif kiki dax fep

zup blicket zup kiki zup fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function compositions

85%

65%

70%

75%

85%

Figure 1: Few-shot learning of instructions in Exp. 1. Participants learned to execute instructions in a novel language of pseudowords by
producing sequences of colored circles. Generalization performance is shown next to each test instruction. The pseudowords and colors were
randomized for each participant and a canonical assignment is shown here.

producing a sequence of abstract outputs (a sequence of col-
ored circles; Fig. 1). Some pseudowords are primitive in-
structions that correspond to a single output symbol, while
other pseudowords are functional terms that require process-
ing of argument items to construct the output. As in SCAN,
one primitive (“zup”) is presented only in isolation during
study and evaluated compositionally during test, appearing
in each test instruction. To perform well, participants must
learn the meaning of each function from just a small number
of demonstrations, and then generalize to new primitives and
more complex compositions than previously observed.

Stimuli. The instructions consisted of seven possible pseu-
dowords and the output sequences consisted of four possi-
ble response symbols (Fig. 1). Four primitive pseudowords
are direct mappings from one input word to one output sym-
bol (e.g., “dax” is “RED” and “wif” is “GREEN”), and the
other pseudowords are functional terms that take arguments.
To discourage a strategy based on word-to-word translation
into English, the functional terms could not be expressed by
single-word modifiers in English, and formed phrases whose
order would be unnatural in English. More specifically Func-
tion 1 (“fep” in Fig. 1) takes the preceding primitive as an ar-
gument and repeats its output three times (“dax fep” is “RED
RED RED”). Function 2 (“blicket”) takes both the preceding
primitive and following primitive as arguments, producing
their outputs in a specific alternating sequence (“wif blicket
dax” is “GREEN RED GREEN”). Last, Function 3 (“kiki”)
takes both the preceding and following strings as input, pro-
cesses them, and concatenates their outputs in reverse order
(“dax kiki lug” is “BLUE RED”). We also tested Function
3 in cases where its arguments were generated by the other
functions, exploring function composition (“wif blicket dax
kiki lug” is “BLUE GREEN RED GREEN”).

Methods. Thirty participants in the United States were re-
cruited using Amazon Mechanical Turk and the psiTurk plat-

form (Gureckis et al., 2015). Participants were informed that
the study related to how people learn input-output associa-
tions, and they would be asked to learn a set of commands
and their corresponding outputs. Learning proceeded in a
curriculum with four stages. In the first three stages, partic-
ipants learned individual functions from just two demonstra-
tions each (Functions 1 through 3; Fig. 1). In the final stage,
participants learned to interpret complex instructions by com-
bining these functions (Function compositions; Fig. 1).

Each stage had both a study phase and test phase. The
study phase presented participants with a set of study input-
output mappings. For the first three stages, the study instruc-
tions always included the four primitives and two examples
of the relevant function, presented together on the screen. For
the last stage, the entire set of study instructions was provided
together in order to probe composition. To facilitate compre-
hension, the output sequence for one of the study items was
covered and participants were asked to reproduce it, given
their memory and the other items on the screen. Corrective
feedback was provided, and participants cycled through all
non-primitive study items until all were produced correctly
or three cycles were completed. The test phase asked partic-
ipants to produce the outputs for novel instructions, with no
feedback provided. The study items remained on the screen
for reference, so that performance would reflect generaliza-
tion in the absence of memory limitations. The study and
test items always differed from one another by more than one
primitive substitution (except in the Function 1 stage, where a
single primitive was presented as novel argument to Function
1). Some test items also required reasoning beyond substitut-
ing variables, and in particular understanding longer compo-
sitions of functions than were seen in the study phase.

The response interface had a pool of possible output sym-
bols which could be clicked or dragged to the response array.
The circles could be rearranged within the array or cleared
with a reset button. The study and test set only used four

Study instructions Test instructions

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 1

88%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 3

86%

86%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 2

88%

79%

●●●●
●●●●
●●●●
●●●●●●
●●●●●●

Training examples

zup fep kiki lug

wif kiki zup fep

lug kiki wif blicket zup

zup blicket wif kiki dax fep

zup blicket zup kiki zup fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function compositions

85%

65%

70%

75%

85%

Figure 1: Few-shot learning of instructions in Exp. 1. Participants learned to execute instructions in a novel language of pseudowords by
producing sequences of colored circles. Generalization performance is shown next to each test instruction. The pseudowords and colors were
randomized for each participant and a canonical assignment is shown here.

producing a sequence of abstract outputs (a sequence of col-
ored circles; Fig. 1). Some pseudowords are primitive in-
structions that correspond to a single output symbol, while
other pseudowords are functional terms that require process-
ing of argument items to construct the output. As in SCAN,
one primitive (“zup”) is presented only in isolation during
study and evaluated compositionally during test, appearing
in each test instruction. To perform well, participants must
learn the meaning of each function from just a small number
of demonstrations, and then generalize to new primitives and
more complex compositions than previously observed.

Stimuli. The instructions consisted of seven possible pseu-
dowords and the output sequences consisted of four possi-
ble response symbols (Fig. 1). Four primitive pseudowords
are direct mappings from one input word to one output sym-
bol (e.g., “dax” is “RED” and “wif” is “GREEN”), and the
other pseudowords are functional terms that take arguments.
To discourage a strategy based on word-to-word translation
into English, the functional terms could not be expressed by
single-word modifiers in English, and formed phrases whose
order would be unnatural in English. More specifically Func-
tion 1 (“fep” in Fig. 1) takes the preceding primitive as an ar-
gument and repeats its output three times (“dax fep” is “RED
RED RED”). Function 2 (“blicket”) takes both the preceding
primitive and following primitive as arguments, producing
their outputs in a specific alternating sequence (“wif blicket
dax” is “GREEN RED GREEN”). Last, Function 3 (“kiki”)
takes both the preceding and following strings as input, pro-
cesses them, and concatenates their outputs in reverse order
(“dax kiki lug” is “BLUE RED”). We also tested Function
3 in cases where its arguments were generated by the other
functions, exploring function composition (“wif blicket dax
kiki lug” is “BLUE GREEN RED GREEN”).

Methods. Thirty participants in the United States were re-
cruited using Amazon Mechanical Turk and the psiTurk plat-

form (Gureckis et al., 2015). Participants were informed that
the study related to how people learn input-output associa-
tions, and they would be asked to learn a set of commands
and their corresponding outputs. Learning proceeded in a
curriculum with four stages. In the first three stages, partic-
ipants learned individual functions from just two demonstra-
tions each (Functions 1 through 3; Fig. 1). In the final stage,
participants learned to interpret complex instructions by com-
bining these functions (Function compositions; Fig. 1).

Each stage had both a study phase and test phase. The
study phase presented participants with a set of study input-
output mappings. For the first three stages, the study instruc-
tions always included the four primitives and two examples
of the relevant function, presented together on the screen. For
the last stage, the entire set of study instructions was provided
together in order to probe composition. To facilitate compre-
hension, the output sequence for one of the study items was
covered and participants were asked to reproduce it, given
their memory and the other items on the screen. Corrective
feedback was provided, and participants cycled through all
non-primitive study items until all were produced correctly
or three cycles were completed. The test phase asked partic-
ipants to produce the outputs for novel instructions, with no
feedback provided. The study items remained on the screen
for reference, so that performance would reflect generaliza-
tion in the absence of memory limitations. The study and
test items always differed from one another by more than one
primitive substitution (except in the Function 1 stage, where a
single primitive was presented as novel argument to Function
1). Some test items also required reasoning beyond substitut-
ing variables, and in particular understanding longer compo-
sitions of functions than were seen in the study phase.

The response interface had a pool of possible output sym-
bols which could be clicked or dragged to the response array.
The circles could be rearranged within the array or cleared
with a reset button. The study and test set only used four

Study instructions Test instructions

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 1

88%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 3

86%

86%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 2

88%

79%

●●●●
●●●●
●●●●
●●●●●●
●●●●●●

Training examples

zup fep kiki lug

wif kiki zup fep

lug kiki wif blicket zup

zup blicket wif kiki dax fep

zup blicket zup kiki zup fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function compositions

85%

65%

70%

75%

85%

Figure 1: Few-shot learning of instructions in Exp. 1. Participants learned to execute instructions in a novel language of pseudowords by
producing sequences of colored circles. Generalization performance is shown next to each test instruction. The pseudowords and colors were
randomized for each participant and a canonical assignment is shown here.

producing a sequence of abstract outputs (a sequence of col-
ored circles; Fig. 1). Some pseudowords are primitive in-
structions that correspond to a single output symbol, while
other pseudowords are functional terms that require process-
ing of argument items to construct the output. As in SCAN,
one primitive (“zup”) is presented only in isolation during
study and evaluated compositionally during test, appearing
in each test instruction. To perform well, participants must
learn the meaning of each function from just a small number
of demonstrations, and then generalize to new primitives and
more complex compositions than previously observed.

Stimuli. The instructions consisted of seven possible pseu-
dowords and the output sequences consisted of four possi-
ble response symbols (Fig. 1). Four primitive pseudowords
are direct mappings from one input word to one output sym-
bol (e.g., “dax” is “RED” and “wif” is “GREEN”), and the
other pseudowords are functional terms that take arguments.
To discourage a strategy based on word-to-word translation
into English, the functional terms could not be expressed by
single-word modifiers in English, and formed phrases whose
order would be unnatural in English. More specifically Func-
tion 1 (“fep” in Fig. 1) takes the preceding primitive as an ar-
gument and repeats its output three times (“dax fep” is “RED
RED RED”). Function 2 (“blicket”) takes both the preceding
primitive and following primitive as arguments, producing
their outputs in a specific alternating sequence (“wif blicket
dax” is “GREEN RED GREEN”). Last, Function 3 (“kiki”)
takes both the preceding and following strings as input, pro-
cesses them, and concatenates their outputs in reverse order
(“dax kiki lug” is “BLUE RED”). We also tested Function
3 in cases where its arguments were generated by the other
functions, exploring function composition (“wif blicket dax
kiki lug” is “BLUE GREEN RED GREEN”).

Methods. Thirty participants in the United States were re-
cruited using Amazon Mechanical Turk and the psiTurk plat-

form (Gureckis et al., 2015). Participants were informed that
the study related to how people learn input-output associa-
tions, and they would be asked to learn a set of commands
and their corresponding outputs. Learning proceeded in a
curriculum with four stages. In the first three stages, partic-
ipants learned individual functions from just two demonstra-
tions each (Functions 1 through 3; Fig. 1). In the final stage,
participants learned to interpret complex instructions by com-
bining these functions (Function compositions; Fig. 1).

Each stage had both a study phase and test phase. The
study phase presented participants with a set of study input-
output mappings. For the first three stages, the study instruc-
tions always included the four primitives and two examples
of the relevant function, presented together on the screen. For
the last stage, the entire set of study instructions was provided
together in order to probe composition. To facilitate compre-
hension, the output sequence for one of the study items was
covered and participants were asked to reproduce it, given
their memory and the other items on the screen. Corrective
feedback was provided, and participants cycled through all
non-primitive study items until all were produced correctly
or three cycles were completed. The test phase asked partic-
ipants to produce the outputs for novel instructions, with no
feedback provided. The study items remained on the screen
for reference, so that performance would reflect generaliza-
tion in the absence of memory limitations. The study and
test items always differed from one another by more than one
primitive substitution (except in the Function 1 stage, where a
single primitive was presented as novel argument to Function
1). Some test items also required reasoning beyond substitut-
ing variables, and in particular understanding longer compo-
sitions of functions than were seen in the study phase.

The response interface had a pool of possible output sym-
bols which could be clicked or dragged to the response array.
The circles could be rearranged within the array or cleared
with a reset button. The study and test set only used four

Study instructions Test instructions

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 1

88%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 3

86%

86%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 2

88%

79%

●●●●
●●●●
●●●●
●●●●●●
●●●●●●

Training examples

zup fep kiki lug

wif kiki zup fep

lug kiki wif blicket zup

zup blicket wif kiki dax fep

zup blicket zup kiki zup fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function compositions

85%

65%

70%

75%

85%

Figure 1: Few-shot learning of instructions in Exp. 1. Participants learned to execute instructions in a novel language of pseudowords by
producing sequences of colored circles. Generalization performance is shown next to each test instruction. The pseudowords and colors were
randomized for each participant and a canonical assignment is shown here.

producing a sequence of abstract outputs (a sequence of col-
ored circles; Fig. 1). Some pseudowords are primitive in-
structions that correspond to a single output symbol, while
other pseudowords are functional terms that require process-
ing of argument items to construct the output. As in SCAN,
one primitive (“zup”) is presented only in isolation during
study and evaluated compositionally during test, appearing
in each test instruction. To perform well, participants must
learn the meaning of each function from just a small number
of demonstrations, and then generalize to new primitives and
more complex compositions than previously observed.

Stimuli. The instructions consisted of seven possible pseu-
dowords and the output sequences consisted of four possi-
ble response symbols (Fig. 1). Four primitive pseudowords
are direct mappings from one input word to one output sym-
bol (e.g., “dax” is “RED” and “wif” is “GREEN”), and the
other pseudowords are functional terms that take arguments.
To discourage a strategy based on word-to-word translation
into English, the functional terms could not be expressed by
single-word modifiers in English, and formed phrases whose
order would be unnatural in English. More specifically Func-
tion 1 (“fep” in Fig. 1) takes the preceding primitive as an ar-
gument and repeats its output three times (“dax fep” is “RED
RED RED”). Function 2 (“blicket”) takes both the preceding
primitive and following primitive as arguments, producing
their outputs in a specific alternating sequence (“wif blicket
dax” is “GREEN RED GREEN”). Last, Function 3 (“kiki”)
takes both the preceding and following strings as input, pro-
cesses them, and concatenates their outputs in reverse order
(“dax kiki lug” is “BLUE RED”). We also tested Function
3 in cases where its arguments were generated by the other
functions, exploring function composition (“wif blicket dax
kiki lug” is “BLUE GREEN RED GREEN”).

Methods. Thirty participants in the United States were re-
cruited using Amazon Mechanical Turk and the psiTurk plat-

form (Gureckis et al., 2015). Participants were informed that
the study related to how people learn input-output associa-
tions, and they would be asked to learn a set of commands
and their corresponding outputs. Learning proceeded in a
curriculum with four stages. In the first three stages, partic-
ipants learned individual functions from just two demonstra-
tions each (Functions 1 through 3; Fig. 1). In the final stage,
participants learned to interpret complex instructions by com-
bining these functions (Function compositions; Fig. 1).

Each stage had both a study phase and test phase. The
study phase presented participants with a set of study input-
output mappings. For the first three stages, the study instruc-
tions always included the four primitives and two examples
of the relevant function, presented together on the screen. For
the last stage, the entire set of study instructions was provided
together in order to probe composition. To facilitate compre-
hension, the output sequence for one of the study items was
covered and participants were asked to reproduce it, given
their memory and the other items on the screen. Corrective
feedback was provided, and participants cycled through all
non-primitive study items until all were produced correctly
or three cycles were completed. The test phase asked partic-
ipants to produce the outputs for novel instructions, with no
feedback provided. The study items remained on the screen
for reference, so that performance would reflect generaliza-
tion in the absence of memory limitations. The study and
test items always differed from one another by more than one
primitive substitution (except in the Function 1 stage, where a
single primitive was presented as novel argument to Function
1). Some test items also required reasoning beyond substitut-
ing variables, and in particular understanding longer compo-
sitions of functions than were seen in the study phase.

The response interface had a pool of possible output sym-
bols which could be clicked or dragged to the response array.
The circles could be rearranged within the array or cleared
with a reset button. The study and test set only used four

Apply a function to novel input
variables

Compose functions together in
new ways

A test of systematicity for humans and machines

• Modifier (“fep”-thrice):
• dax fep ➔ ● ● ●
• lug fep ➔ ● ● ●

• Conjunctions (“blicket”-surround, “kiki”-after):
• wif blicket dax ➔ ● ● ●
• lug blicket wif ➔ ● ● ●
• dax kiki lug ➔ ● ●

• Simplifications:
• No scope ambiguity (“lug kiki [wif fep]” ➔ ● ● ● ●)

• Four primitive instructions:
• dax ➔ ●
• lug ➔ ●
• wif ➔ ●
• zup ➔ ●

Behavioral experiment 1: Design

• Instructions: “learn a set of commands and
their corresponding outputs”
• Outputs produced by dragging symbols from

a pool of options
• Curriculum learning
• Support set remained visible during query

phase
• Participants recruited on AMT

● ●

● ●

●● ●●

●●● ●●●

●●● ●●●

●●●● ●●●●

●●●● ●●●●

●●

●● ●●●

●●● ●●

●●●

●●● ●●●

●● ●●

●●●

●●● ●●●

Training examples

dax lug

wif zup

wif fep lug dax fep wif

wif blicket wif kiki lug

dax blicket lug kiki dax

wif blicket fep lug lug fep dax kiki wif

wif fep lug blicket lug kiki dax fep wif

Test examples

INPUT: zup fep dax; OUTPUT: (target)

zup fep dax (16) zup fep dax (4)

zup fep dax (1) zup fep dax (1)

INPUT: zup blicket; OUTPUT: (target)

zup blicket (17) zup blicket (2)

zup blicket (2) zup blicket (1)

INPUT: zup kiki wif; OUTPUT: (target)

zup kiki wif (15) zup kiki wif (3)

file:///Users/Brenden/Library/Containers/com.apple.mail/Data/Libr...

1 of 3 6/18/18, 2:17 PM

● ●

● ●

●● ●●

●●● ●●●

●●● ●●●

●●●● ●●●●

●●●● ●●●●

●●

●● ●●●

●●● ●●

●●●

●●● ●●●

●● ●●

●●●

●●● ●●●

Training examples

dax lug

wif zup

wif fep lug dax fep wif

wif blicket wif kiki lug

dax blicket lug kiki dax

wif blicket fep lug lug fep dax kiki wif

wif fep lug blicket lug kiki dax fep wif

Test examples

INPUT: zup fep dax; OUTPUT: (target)

zup fep dax (16) zup fep dax (4)

zup fep dax (1) zup fep dax (1)

INPUT: zup blicket; OUTPUT: (target)

zup blicket (17) zup blicket (2)

zup blicket (2) zup blicket (1)

INPUT: zup kiki wif; OUTPUT: (target)

zup kiki wif (15) zup kiki wif (3)

file:///Users/Brenden/Library/Containers/com.apple.mail/Data/Libr...

1 of 3 6/18/18, 2:17 PM

● ●

● ●

●● ●●

●●● ●●●

●●● ●●●

●●●● ●●●●

●●●● ●●●●

●●

●● ●●●

●● ●●●

●●● ●●●

●●● ●●●●

●●● ●●●

●●● ●●●

●●● ●●●●

●●●●

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (23) yellow after red (8)

yellow after red (3) yellow after red (3)

yellow after red (2) yellow after red (2)

yellow after red (1) yellow after red (1)

yellow after red (1) yellow after red (1)

yellow after red (1) yellow after red (1)

yellow after red (1) yellow after red (1)

yellow after red (1)

file:///Users/Brenden/Library/Containers/com.apple.mail/Data/Libr...

1 of 9 6/25/18, 5:11 PM

…● ●

● ●

●● ●●

●●● ●●●

●●● ●●●

●●●● ●●●●

●●●● ●●●●

●●

●● ●●●

●●● ●●

●●●

●●● ●●●

●● ●●

●●●

●●● ●●●

Training examples

dax lug

wif zup

wif fep lug dax fep wif

wif blicket wif kiki lug

dax blicket lug kiki dax

wif blicket fep lug lug fep dax kiki wif

wif fep lug blicket lug kiki dax fep wif

Test examples

INPUT: zup fep dax; OUTPUT: (target)

zup fep dax (16) zup fep dax (4)

zup fep dax (1) zup fep dax (1)

INPUT: zup blicket; OUTPUT: (target)

zup blicket (17) zup blicket (2)

zup blicket (2) zup blicket (1)

INPUT: zup kiki wif; OUTPUT: (target)

zup kiki wif (15) zup kiki wif (3)

file:///Users/Brenden/Library/Containers/com.apple.mail/Data/Libr...

1 of 3 6/18/18, 2:17 PM

Study instructions Test instructions

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 1

88%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 3

86%

86%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 2

88%

79%

●●●●
●●●●
●●●●
●●●●●●
●●●●●●

Training examples

zup fep kiki lug

wif kiki zup fep

lug kiki wif blicket zup

zup blicket wif kiki dax fep

zup blicket zup kiki zup fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function compositions

85%

65%

70%

75%

85%

Figure 1: Few-shot learning of instructions in Exp. 1. Participants learned to execute instructions in a novel language of pseudowords by
producing sequences of colored circles. Generalization performance is shown next to each test instruction. The pseudowords and colors were
randomized for each participant and a canonical assignment is shown here.

producing a sequence of abstract outputs (a sequence of col-
ored circles; Fig. 1). Some pseudowords are primitive in-
structions that correspond to a single output symbol, while
other pseudowords are functional terms that require process-
ing of argument items to construct the output. As in SCAN,
one primitive (“zup”) is presented only in isolation during
study and evaluated compositionally during test, appearing
in each test instruction. To perform well, participants must
learn the meaning of each function from just a small number
of demonstrations, and then generalize to new primitives and
more complex compositions than previously observed.

Stimuli. The instructions consisted of seven possible pseu-
dowords and the output sequences consisted of four possi-
ble response symbols (Fig. 1). Four primitive pseudowords
are direct mappings from one input word to one output sym-
bol (e.g., “dax” is “RED” and “wif” is “GREEN”), and the
other pseudowords are functional terms that take arguments.
To discourage a strategy based on word-to-word translation
into English, the functional terms could not be expressed by
single-word modifiers in English, and formed phrases whose
order would be unnatural in English. More specifically Func-
tion 1 (“fep” in Fig. 1) takes the preceding primitive as an ar-
gument and repeats its output three times (“dax fep” is “RED
RED RED”). Function 2 (“blicket”) takes both the preceding
primitive and following primitive as arguments, producing
their outputs in a specific alternating sequence (“wif blicket
dax” is “GREEN RED GREEN”). Last, Function 3 (“kiki”)
takes both the preceding and following strings as input, pro-
cesses them, and concatenates their outputs in reverse order
(“dax kiki lug” is “BLUE RED”). We also tested Function
3 in cases where its arguments were generated by the other
functions, exploring function composition (“wif blicket dax
kiki lug” is “BLUE GREEN RED GREEN”).

Methods. Thirty participants in the United States were re-
cruited using Amazon Mechanical Turk and the psiTurk plat-

form (Gureckis et al., 2015). Participants were informed that
the study related to how people learn input-output associa-
tions, and they would be asked to learn a set of commands
and their corresponding outputs. Learning proceeded in a
curriculum with four stages. In the first three stages, partic-
ipants learned individual functions from just two demonstra-
tions each (Functions 1 through 3; Fig. 1). In the final stage,
participants learned to interpret complex instructions by com-
bining these functions (Function compositions; Fig. 1).

Each stage had both a study phase and test phase. The
study phase presented participants with a set of study input-
output mappings. For the first three stages, the study instruc-
tions always included the four primitives and two examples
of the relevant function, presented together on the screen. For
the last stage, the entire set of study instructions was provided
together in order to probe composition. To facilitate compre-
hension, the output sequence for one of the study items was
covered and participants were asked to reproduce it, given
their memory and the other items on the screen. Corrective
feedback was provided, and participants cycled through all
non-primitive study items until all were produced correctly
or three cycles were completed. The test phase asked partic-
ipants to produce the outputs for novel instructions, with no
feedback provided. The study items remained on the screen
for reference, so that performance would reflect generaliza-
tion in the absence of memory limitations. The study and
test items always differed from one another by more than one
primitive substitution (except in the Function 1 stage, where a
single primitive was presented as novel argument to Function
1). Some test items also required reasoning beyond substitut-
ing variables, and in particular understanding longer compo-
sitions of functions than were seen in the study phase.

The response interface had a pool of possible output sym-
bols which could be clicked or dragged to the response array.
The circles could be rearranged within the array or cleared
with a reset button. The study and test set only used four

Support Study instructions Test instructions

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 1

88%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 3

86%

86%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 2

88%

79%

●●●●
●●●●
●●●●
●●●●●●
●●●●●●

Training examples

zup fep kiki lug

wif kiki zup fep

lug kiki wif blicket zup

zup blicket wif kiki dax fep

zup blicket zup kiki zup fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function compositions

85%

65%

70%

75%

85%

Figure 1: Few-shot learning of instructions in Exp. 1. Participants learned to execute instructions in a novel language of pseudowords by
producing sequences of colored circles. Generalization performance is shown next to each test instruction. The pseudowords and colors were
randomized for each participant and a canonical assignment is shown here.

producing a sequence of abstract outputs (a sequence of col-
ored circles; Fig. 1). Some pseudowords are primitive in-
structions that correspond to a single output symbol, while
other pseudowords are functional terms that require process-
ing of argument items to construct the output. As in SCAN,
one primitive (“zup”) is presented only in isolation during
study and evaluated compositionally during test, appearing
in each test instruction. To perform well, participants must
learn the meaning of each function from just a small number
of demonstrations, and then generalize to new primitives and
more complex compositions than previously observed.

Stimuli. The instructions consisted of seven possible pseu-
dowords and the output sequences consisted of four possi-
ble response symbols (Fig. 1). Four primitive pseudowords
are direct mappings from one input word to one output sym-
bol (e.g., “dax” is “RED” and “wif” is “GREEN”), and the
other pseudowords are functional terms that take arguments.
To discourage a strategy based on word-to-word translation
into English, the functional terms could not be expressed by
single-word modifiers in English, and formed phrases whose
order would be unnatural in English. More specifically Func-
tion 1 (“fep” in Fig. 1) takes the preceding primitive as an ar-
gument and repeats its output three times (“dax fep” is “RED
RED RED”). Function 2 (“blicket”) takes both the preceding
primitive and following primitive as arguments, producing
their outputs in a specific alternating sequence (“wif blicket
dax” is “GREEN RED GREEN”). Last, Function 3 (“kiki”)
takes both the preceding and following strings as input, pro-
cesses them, and concatenates their outputs in reverse order
(“dax kiki lug” is “BLUE RED”). We also tested Function
3 in cases where its arguments were generated by the other
functions, exploring function composition (“wif blicket dax
kiki lug” is “BLUE GREEN RED GREEN”).

Methods. Thirty participants in the United States were re-
cruited using Amazon Mechanical Turk and the psiTurk plat-

form (Gureckis et al., 2015). Participants were informed that
the study related to how people learn input-output associa-
tions, and they would be asked to learn a set of commands
and their corresponding outputs. Learning proceeded in a
curriculum with four stages. In the first three stages, partic-
ipants learned individual functions from just two demonstra-
tions each (Functions 1 through 3; Fig. 1). In the final stage,
participants learned to interpret complex instructions by com-
bining these functions (Function compositions; Fig. 1).

Each stage had both a study phase and test phase. The
study phase presented participants with a set of study input-
output mappings. For the first three stages, the study instruc-
tions always included the four primitives and two examples
of the relevant function, presented together on the screen. For
the last stage, the entire set of study instructions was provided
together in order to probe composition. To facilitate compre-
hension, the output sequence for one of the study items was
covered and participants were asked to reproduce it, given
their memory and the other items on the screen. Corrective
feedback was provided, and participants cycled through all
non-primitive study items until all were produced correctly
or three cycles were completed. The test phase asked partic-
ipants to produce the outputs for novel instructions, with no
feedback provided. The study items remained on the screen
for reference, so that performance would reflect generaliza-
tion in the absence of memory limitations. The study and
test items always differed from one another by more than one
primitive substitution (except in the Function 1 stage, where a
single primitive was presented as novel argument to Function
1). Some test items also required reasoning beyond substitut-
ing variables, and in particular understanding longer compo-
sitions of functions than were seen in the study phase.

The response interface had a pool of possible output sym-
bols which could be clicked or dragged to the response array.
The circles could be rearranged within the array or cleared
with a reset button. The study and test set only used four

Study instructions Test instructions

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 1

88%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 3

86%

86%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 2

88%

79%

●●●●
●●●●
●●●●
●●●●●●
●●●●●●

Training examples

zup fep kiki lug

wif kiki zup fep

lug kiki wif blicket zup

zup blicket wif kiki dax fep

zup blicket zup kiki zup fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function compositions

85%

65%

70%

75%

85%

Figure 1: Few-shot learning of instructions in Exp. 1. Participants learned to execute instructions in a novel language of pseudowords by
producing sequences of colored circles. Generalization performance is shown next to each test instruction. The pseudowords and colors were
randomized for each participant and a canonical assignment is shown here.

producing a sequence of abstract outputs (a sequence of col-
ored circles; Fig. 1). Some pseudowords are primitive in-
structions that correspond to a single output symbol, while
other pseudowords are functional terms that require process-
ing of argument items to construct the output. As in SCAN,
one primitive (“zup”) is presented only in isolation during
study and evaluated compositionally during test, appearing
in each test instruction. To perform well, participants must
learn the meaning of each function from just a small number
of demonstrations, and then generalize to new primitives and
more complex compositions than previously observed.

Stimuli. The instructions consisted of seven possible pseu-
dowords and the output sequences consisted of four possi-
ble response symbols (Fig. 1). Four primitive pseudowords
are direct mappings from one input word to one output sym-
bol (e.g., “dax” is “RED” and “wif” is “GREEN”), and the
other pseudowords are functional terms that take arguments.
To discourage a strategy based on word-to-word translation
into English, the functional terms could not be expressed by
single-word modifiers in English, and formed phrases whose
order would be unnatural in English. More specifically Func-
tion 1 (“fep” in Fig. 1) takes the preceding primitive as an ar-
gument and repeats its output three times (“dax fep” is “RED
RED RED”). Function 2 (“blicket”) takes both the preceding
primitive and following primitive as arguments, producing
their outputs in a specific alternating sequence (“wif blicket
dax” is “GREEN RED GREEN”). Last, Function 3 (“kiki”)
takes both the preceding and following strings as input, pro-
cesses them, and concatenates their outputs in reverse order
(“dax kiki lug” is “BLUE RED”). We also tested Function
3 in cases where its arguments were generated by the other
functions, exploring function composition (“wif blicket dax
kiki lug” is “BLUE GREEN RED GREEN”).

Methods. Thirty participants in the United States were re-
cruited using Amazon Mechanical Turk and the psiTurk plat-

form (Gureckis et al., 2015). Participants were informed that
the study related to how people learn input-output associa-
tions, and they would be asked to learn a set of commands
and their corresponding outputs. Learning proceeded in a
curriculum with four stages. In the first three stages, partic-
ipants learned individual functions from just two demonstra-
tions each (Functions 1 through 3; Fig. 1). In the final stage,
participants learned to interpret complex instructions by com-
bining these functions (Function compositions; Fig. 1).

Each stage had both a study phase and test phase. The
study phase presented participants with a set of study input-
output mappings. For the first three stages, the study instruc-
tions always included the four primitives and two examples
of the relevant function, presented together on the screen. For
the last stage, the entire set of study instructions was provided
together in order to probe composition. To facilitate compre-
hension, the output sequence for one of the study items was
covered and participants were asked to reproduce it, given
their memory and the other items on the screen. Corrective
feedback was provided, and participants cycled through all
non-primitive study items until all were produced correctly
or three cycles were completed. The test phase asked partic-
ipants to produce the outputs for novel instructions, with no
feedback provided. The study items remained on the screen
for reference, so that performance would reflect generaliza-
tion in the absence of memory limitations. The study and
test items always differed from one another by more than one
primitive substitution (except in the Function 1 stage, where a
single primitive was presented as novel argument to Function
1). Some test items also required reasoning beyond substitut-
ing variables, and in particular understanding longer compo-
sitions of functions than were seen in the study phase.

The response interface had a pool of possible output sym-
bols which could be clicked or dragged to the response array.
The circles could be rearranged within the array or cleared
with a reset button. The study and test set only used four

Study instructions Test instructions

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 1

88%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 3

86%

86%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 2

88%

79%

●●●●
●●●●
●●●●
●●●●●●
●●●●●●

Training examples

zup fep kiki lug

wif kiki zup fep

lug kiki wif blicket zup

zup blicket wif kiki dax fep

zup blicket zup kiki zup fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function compositions

85%

65%

70%

75%

85%

Figure 1: Few-shot learning of instructions in Exp. 1. Participants learned to execute instructions in a novel language of pseudowords by
producing sequences of colored circles. Generalization performance is shown next to each test instruction. The pseudowords and colors were
randomized for each participant and a canonical assignment is shown here.

producing a sequence of abstract outputs (a sequence of col-
ored circles; Fig. 1). Some pseudowords are primitive in-
structions that correspond to a single output symbol, while
other pseudowords are functional terms that require process-
ing of argument items to construct the output. As in SCAN,
one primitive (“zup”) is presented only in isolation during
study and evaluated compositionally during test, appearing
in each test instruction. To perform well, participants must
learn the meaning of each function from just a small number
of demonstrations, and then generalize to new primitives and
more complex compositions than previously observed.

Stimuli. The instructions consisted of seven possible pseu-
dowords and the output sequences consisted of four possi-
ble response symbols (Fig. 1). Four primitive pseudowords
are direct mappings from one input word to one output sym-
bol (e.g., “dax” is “RED” and “wif” is “GREEN”), and the
other pseudowords are functional terms that take arguments.
To discourage a strategy based on word-to-word translation
into English, the functional terms could not be expressed by
single-word modifiers in English, and formed phrases whose
order would be unnatural in English. More specifically Func-
tion 1 (“fep” in Fig. 1) takes the preceding primitive as an ar-
gument and repeats its output three times (“dax fep” is “RED
RED RED”). Function 2 (“blicket”) takes both the preceding
primitive and following primitive as arguments, producing
their outputs in a specific alternating sequence (“wif blicket
dax” is “GREEN RED GREEN”). Last, Function 3 (“kiki”)
takes both the preceding and following strings as input, pro-
cesses them, and concatenates their outputs in reverse order
(“dax kiki lug” is “BLUE RED”). We also tested Function
3 in cases where its arguments were generated by the other
functions, exploring function composition (“wif blicket dax
kiki lug” is “BLUE GREEN RED GREEN”).

Methods. Thirty participants in the United States were re-
cruited using Amazon Mechanical Turk and the psiTurk plat-

form (Gureckis et al., 2015). Participants were informed that
the study related to how people learn input-output associa-
tions, and they would be asked to learn a set of commands
and their corresponding outputs. Learning proceeded in a
curriculum with four stages. In the first three stages, partic-
ipants learned individual functions from just two demonstra-
tions each (Functions 1 through 3; Fig. 1). In the final stage,
participants learned to interpret complex instructions by com-
bining these functions (Function compositions; Fig. 1).

Each stage had both a study phase and test phase. The
study phase presented participants with a set of study input-
output mappings. For the first three stages, the study instruc-
tions always included the four primitives and two examples
of the relevant function, presented together on the screen. For
the last stage, the entire set of study instructions was provided
together in order to probe composition. To facilitate compre-
hension, the output sequence for one of the study items was
covered and participants were asked to reproduce it, given
their memory and the other items on the screen. Corrective
feedback was provided, and participants cycled through all
non-primitive study items until all were produced correctly
or three cycles were completed. The test phase asked partic-
ipants to produce the outputs for novel instructions, with no
feedback provided. The study items remained on the screen
for reference, so that performance would reflect generaliza-
tion in the absence of memory limitations. The study and
test items always differed from one another by more than one
primitive substitution (except in the Function 1 stage, where a
single primitive was presented as novel argument to Function
1). Some test items also required reasoning beyond substitut-
ing variables, and in particular understanding longer compo-
sitions of functions than were seen in the study phase.

The response interface had a pool of possible output sym-
bols which could be clicked or dragged to the response array.
The circles could be rearranged within the array or cleared
with a reset button. The study and test set only used four

Study instructions Test instructions

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 1

88%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 3

86%

86%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 2

88%

79%

●●●●
●●●●
●●●●
●●●●●●
●●●●●●

Training examples

zup fep kiki lug

wif kiki zup fep

lug kiki wif blicket zup

zup blicket wif kiki dax fep

zup blicket zup kiki zup fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function compositions

85%

65%

70%

75%

85%

Figure 1: Few-shot learning of instructions in Exp. 1. Participants learned to execute instructions in a novel language of pseudowords by
producing sequences of colored circles. Generalization performance is shown next to each test instruction. The pseudowords and colors were
randomized for each participant and a canonical assignment is shown here.

producing a sequence of abstract outputs (a sequence of col-
ored circles; Fig. 1). Some pseudowords are primitive in-
structions that correspond to a single output symbol, while
other pseudowords are functional terms that require process-
ing of argument items to construct the output. As in SCAN,
one primitive (“zup”) is presented only in isolation during
study and evaluated compositionally during test, appearing
in each test instruction. To perform well, participants must
learn the meaning of each function from just a small number
of demonstrations, and then generalize to new primitives and
more complex compositions than previously observed.

Stimuli. The instructions consisted of seven possible pseu-
dowords and the output sequences consisted of four possi-
ble response symbols (Fig. 1). Four primitive pseudowords
are direct mappings from one input word to one output sym-
bol (e.g., “dax” is “RED” and “wif” is “GREEN”), and the
other pseudowords are functional terms that take arguments.
To discourage a strategy based on word-to-word translation
into English, the functional terms could not be expressed by
single-word modifiers in English, and formed phrases whose
order would be unnatural in English. More specifically Func-
tion 1 (“fep” in Fig. 1) takes the preceding primitive as an ar-
gument and repeats its output three times (“dax fep” is “RED
RED RED”). Function 2 (“blicket”) takes both the preceding
primitive and following primitive as arguments, producing
their outputs in a specific alternating sequence (“wif blicket
dax” is “GREEN RED GREEN”). Last, Function 3 (“kiki”)
takes both the preceding and following strings as input, pro-
cesses them, and concatenates their outputs in reverse order
(“dax kiki lug” is “BLUE RED”). We also tested Function
3 in cases where its arguments were generated by the other
functions, exploring function composition (“wif blicket dax
kiki lug” is “BLUE GREEN RED GREEN”).

Methods. Thirty participants in the United States were re-
cruited using Amazon Mechanical Turk and the psiTurk plat-

form (Gureckis et al., 2015). Participants were informed that
the study related to how people learn input-output associa-
tions, and they would be asked to learn a set of commands
and their corresponding outputs. Learning proceeded in a
curriculum with four stages. In the first three stages, partic-
ipants learned individual functions from just two demonstra-
tions each (Functions 1 through 3; Fig. 1). In the final stage,
participants learned to interpret complex instructions by com-
bining these functions (Function compositions; Fig. 1).

Each stage had both a study phase and test phase. The
study phase presented participants with a set of study input-
output mappings. For the first three stages, the study instruc-
tions always included the four primitives and two examples
of the relevant function, presented together on the screen. For
the last stage, the entire set of study instructions was provided
together in order to probe composition. To facilitate compre-
hension, the output sequence for one of the study items was
covered and participants were asked to reproduce it, given
their memory and the other items on the screen. Corrective
feedback was provided, and participants cycled through all
non-primitive study items until all were produced correctly
or three cycles were completed. The test phase asked partic-
ipants to produce the outputs for novel instructions, with no
feedback provided. The study items remained on the screen
for reference, so that performance would reflect generaliza-
tion in the absence of memory limitations. The study and
test items always differed from one another by more than one
primitive substitution (except in the Function 1 stage, where a
single primitive was presented as novel argument to Function
1). Some test items also required reasoning beyond substitut-
ing variables, and in particular understanding longer compo-
sitions of functions than were seen in the study phase.

The response interface had a pool of possible output sym-
bols which could be clicked or dragged to the response array.
The circles could be rearranged within the array or cleared
with a reset button. The study and test set only used four

Applying a function to
novel input variables
(84.3% correct; n=25)

Composing functions
together in new ways
(76.0% correct; n=20)

Experiment 1: Results
Queries

Study instructions Test instructions

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 1

88%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 3

86%

86%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 2

88%

79%

●●●●
●●●●
●●●●
●●●●●●
●●●●●●

Training examples

zup fep kiki lug

wif kiki zup fep

lug kiki wif blicket zup

zup blicket wif kiki dax fep

zup blicket zup kiki zup fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function compositions

85%

65%

70%

75%

85%

Figure 2: Few-shot learning of instructions in Exp. 1. Participants learned to execute instructions in a novel language of pseudowords by
producing sequences of colored circles. Generalization performance is shown next to each test instruction, as the percent correct across
participants. The pseudowords and colors were randomized for each participant; the figure illustrates an example of such an assignment.

presented in random order.
We used several strategies to ensure that our participants

were paying attention. First, before the experiment, partici-
pants practiced using the response interface and had to pass
an instructions quiz; they cycled through the quiz until they
passed it. Second, catch trials were included during the test
phases, probing the study items rather than new items, with
the answers clearly presented on the screen above. There was
one catch trial per stage (except the last stage had two); a par-
ticipants’ test data was excluded if the participant missed two
or more catch trials (n = 5). Finally, test phases were also
excluded if the corresponding study phases were not passed
in the allotted time (13% of remaining data).

Recurrent neural networks. Standard sequence-to-
sequence recurrent neural networks (RNNs; Fig. 1) failed
to generalize from the study set to the test set. RNNs were
trained using supervised learning on the 14 study instructions
and evaluated on the test instructions (Fig. 2), using the
best overall architecture from Lake and Baroni (2018) on
the related SCAN benchmark (2-layer LSTM encoder and
decoder, 200 hidden units per layer, a dropout probability
of 0.5, no attention). This network (Fig. 1) consists of two
neural networks working together: an encoder RNN that
processes the instruction and embeds it as a vector, and a
decoder RNN that decodes this vector as a sequence of output
symbols. Another top architecture from Lake and Baroni
was also evaluated (1-layer LSTM encoder and decoder, 100
hidden units per layer, dropout 0.1, with attention). The
training setup mimicked Lake and Baroni but with 10,000
instruction presentations, corresponding to about 700 passes
through the training data (epochs). Several variants of the
architectures were also trained, repeatedly reducing the
number of hidden units by half until there were only three
hidden units per layer. Averaged across five random seeds,
no architecture generalized better than 2.5% correct on the

test instructions, confirming Lake and Baroni’s conclusion
that seq2seq RNNs struggle with few-shot learning and
systematic generalization.

Results. Human participants showed an impressive ability
to learn functions from limited experience and generalize to
novel inputs, as summarized in Fig. 2. In the first three
stages, performance was measured separately for each func-
tional term after exclusions through the above attention cri-
teria. Average performance across participants was 84.3%
correct (n = 25), counting sequences as correct only if every
output symbol was correct. Measured for individual func-
tions, accuracy was 88.0% (n = 25) for Function 1, 83.3%
(n = 24) for Function 2, and 86.4% (n = 22) for Function 3.1

Participants were also able to compose functions together
to interpret novel sequences of instructions. In the final stage,
accuracy on complex instructions was 76.0% (n = 20). Peo-
ple could generalize to longer and more complex instructions
than previously observed, an ability that seq2seq neural net-
works particularly struggle with (Lake & Baroni, 2018). Dur-
ing the study phase, the most complex instruction consisted
of five input pseudowords requiring two function composi-
tions, producing four output symbols. At test, most partici-
pants could successfully go beyond this, correctly processing
six input pseudowords requiring three function compositions,
producing six output symbols (72.5% correct).

The pattern of errors showcases intriguing alternative hy-
potheses that participants adopted. Some errors were sug-
gestive of inductive biases and assumptions that people bring
to the learning task—principles that are reasonable a priori
and consistent with some but not all of the provided demon-
strations. For instance, many errors can be characterized by
a bias we term “one-to-one,” the assumption that each input

1The number of participants varies since data was included on
the basis of passing the study phase. For comparison, the overall
accuracy with no exclusions at all was 72.0%.

Study instructions Test instructions

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 1

88%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 3

86%

86%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 2

88%

79%

●●●●
●●●●
●●●●
●●●●●●
●●●●●●

Training examples

zup fep kiki lug

wif kiki zup fep

lug kiki wif blicket zup

zup blicket wif kiki dax fep

zup blicket zup kiki zup fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function compositions

85%

65%

70%

75%

85%

Figure 2: Few-shot learning of instructions in Exp. 1. Participants learned to execute instructions in a novel language of pseudowords by
producing sequences of colored circles. Generalization performance is shown next to each test instruction, as the percent correct across
participants. The pseudowords and colors were randomized for each participant; the figure illustrates an example of such an assignment.

presented in random order.
We used several strategies to ensure that our participants

were paying attention. First, before the experiment, partici-
pants practiced using the response interface and had to pass
an instructions quiz; they cycled through the quiz until they
passed it. Second, catch trials were included during the test
phases, probing the study items rather than new items, with
the answers clearly presented on the screen above. There was
one catch trial per stage (except the last stage had two); a par-
ticipants’ test data was excluded if the participant missed two
or more catch trials (n = 5). Finally, test phases were also
excluded if the corresponding study phases were not passed
in the allotted time (13% of remaining data).

Recurrent neural networks. Standard sequence-to-
sequence recurrent neural networks (RNNs; Fig. 1) failed
to generalize from the study set to the test set. RNNs were
trained using supervised learning on the 14 study instructions
and evaluated on the test instructions (Fig. 2), using the
best overall architecture from Lake and Baroni (2018) on
the related SCAN benchmark (2-layer LSTM encoder and
decoder, 200 hidden units per layer, a dropout probability
of 0.5, no attention). This network (Fig. 1) consists of two
neural networks working together: an encoder RNN that
processes the instruction and embeds it as a vector, and a
decoder RNN that decodes this vector as a sequence of output
symbols. Another top architecture from Lake and Baroni
was also evaluated (1-layer LSTM encoder and decoder, 100
hidden units per layer, dropout 0.1, with attention). The
training setup mimicked Lake and Baroni but with 10,000
instruction presentations, corresponding to about 700 passes
through the training data (epochs). Several variants of the
architectures were also trained, repeatedly reducing the
number of hidden units by half until there were only three
hidden units per layer. Averaged across five random seeds,
no architecture generalized better than 2.5% correct on the

test instructions, confirming Lake and Baroni’s conclusion
that seq2seq RNNs struggle with few-shot learning and
systematic generalization.

Results. Human participants showed an impressive ability
to learn functions from limited experience and generalize to
novel inputs, as summarized in Fig. 2. In the first three
stages, performance was measured separately for each func-
tional term after exclusions through the above attention cri-
teria. Average performance across participants was 84.3%
correct (n = 25), counting sequences as correct only if every
output symbol was correct. Measured for individual func-
tions, accuracy was 88.0% (n = 25) for Function 1, 83.3%
(n = 24) for Function 2, and 86.4% (n = 22) for Function 3.1

Participants were also able to compose functions together
to interpret novel sequences of instructions. In the final stage,
accuracy on complex instructions was 76.0% (n = 20). Peo-
ple could generalize to longer and more complex instructions
than previously observed, an ability that seq2seq neural net-
works particularly struggle with (Lake & Baroni, 2018). Dur-
ing the study phase, the most complex instruction consisted
of five input pseudowords requiring two function composi-
tions, producing four output symbols. At test, most partici-
pants could successfully go beyond this, correctly processing
six input pseudowords requiring three function compositions,
producing six output symbols (72.5% correct).

The pattern of errors showcases intriguing alternative hy-
potheses that participants adopted. Some errors were sug-
gestive of inductive biases and assumptions that people bring
to the learning task—principles that are reasonable a priori
and consistent with some but not all of the provided demon-
strations. For instance, many errors can be characterized by
a bias we term “one-to-one,” the assumption that each input

1The number of participants varies since data was included on
the basis of passing the study phase. For comparison, the overall
accuracy with no exclusions at all was 72.0%.

Study instructions Test instructions

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 1

88%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 3

86%

86%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 2

88%

79%

●●●●
●●●●
●●●●
●●●●●●
●●●●●●

Training examples

zup fep kiki lug

wif kiki zup fep

lug kiki wif blicket zup

zup blicket wif kiki dax fep

zup blicket zup kiki zup fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function compositions

85%

65%

70%

75%

85%

Figure 2: Few-shot learning of instructions in Exp. 1. Participants learned to execute instructions in a novel language of pseudowords by
producing sequences of colored circles. Generalization performance is shown next to each test instruction, as the percent correct across
participants. The pseudowords and colors were randomized for each participant; the figure illustrates an example of such an assignment.

presented in random order.
We used several strategies to ensure that our participants

were paying attention. First, before the experiment, partici-
pants practiced using the response interface and had to pass
an instructions quiz; they cycled through the quiz until they
passed it. Second, catch trials were included during the test
phases, probing the study items rather than new items, with
the answers clearly presented on the screen above. There was
one catch trial per stage (except the last stage had two); a par-
ticipants’ test data was excluded if the participant missed two
or more catch trials (n = 5). Finally, test phases were also
excluded if the corresponding study phases were not passed
in the allotted time (13% of remaining data).

Recurrent neural networks. Standard sequence-to-
sequence recurrent neural networks (RNNs; Fig. 1) failed
to generalize from the study set to the test set. RNNs were
trained using supervised learning on the 14 study instructions
and evaluated on the test instructions (Fig. 2), using the
best overall architecture from Lake and Baroni (2018) on
the related SCAN benchmark (2-layer LSTM encoder and
decoder, 200 hidden units per layer, a dropout probability
of 0.5, no attention). This network (Fig. 1) consists of two
neural networks working together: an encoder RNN that
processes the instruction and embeds it as a vector, and a
decoder RNN that decodes this vector as a sequence of output
symbols. Another top architecture from Lake and Baroni
was also evaluated (1-layer LSTM encoder and decoder, 100
hidden units per layer, dropout 0.1, with attention). The
training setup mimicked Lake and Baroni but with 10,000
instruction presentations, corresponding to about 700 passes
through the training data (epochs). Several variants of the
architectures were also trained, repeatedly reducing the
number of hidden units by half until there were only three
hidden units per layer. Averaged across five random seeds,
no architecture generalized better than 2.5% correct on the

test instructions, confirming Lake and Baroni’s conclusion
that seq2seq RNNs struggle with few-shot learning and
systematic generalization.

Results. Human participants showed an impressive ability
to learn functions from limited experience and generalize to
novel inputs, as summarized in Fig. 2. In the first three
stages, performance was measured separately for each func-
tional term after exclusions through the above attention cri-
teria. Average performance across participants was 84.3%
correct (n = 25), counting sequences as correct only if every
output symbol was correct. Measured for individual func-
tions, accuracy was 88.0% (n = 25) for Function 1, 83.3%
(n = 24) for Function 2, and 86.4% (n = 22) for Function 3.1

Participants were also able to compose functions together
to interpret novel sequences of instructions. In the final stage,
accuracy on complex instructions was 76.0% (n = 20). Peo-
ple could generalize to longer and more complex instructions
than previously observed, an ability that seq2seq neural net-
works particularly struggle with (Lake & Baroni, 2018). Dur-
ing the study phase, the most complex instruction consisted
of five input pseudowords requiring two function composi-
tions, producing four output symbols. At test, most partici-
pants could successfully go beyond this, correctly processing
six input pseudowords requiring three function compositions,
producing six output symbols (72.5% correct).

The pattern of errors showcases intriguing alternative hy-
potheses that participants adopted. Some errors were sug-
gestive of inductive biases and assumptions that people bring
to the learning task—principles that are reasonable a priori
and consistent with some but not all of the provided demon-
strations. For instance, many errors can be characterized by
a bias we term “one-to-one,” the assumption that each input

1The number of participants varies since data was included on
the basis of passing the study phase. For comparison, the overall
accuracy with no exclusions at all was 72.0%.

Study instructions Test instructions

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 1

88%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 3

86%

86%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 2

88%

79%

●●●●
●●●●
●●●●
●●●●●●
●●●●●●

Training examples

zup fep kiki lug

wif kiki zup fep

lug kiki wif blicket zup

zup blicket wif kiki dax fep

zup blicket zup kiki zup fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function compositions

85%

65%

70%

75%

85%

Figure 2: Few-shot learning of instructions in Exp. 1. Participants learned to execute instructions in a novel language of pseudowords by
producing sequences of colored circles. Generalization performance is shown next to each test instruction, as the percent correct across
participants. The pseudowords and colors were randomized for each participant; the figure illustrates an example of such an assignment.

presented in random order.
We used several strategies to ensure that our participants

were paying attention. First, before the experiment, partici-
pants practiced using the response interface and had to pass
an instructions quiz; they cycled through the quiz until they
passed it. Second, catch trials were included during the test
phases, probing the study items rather than new items, with
the answers clearly presented on the screen above. There was
one catch trial per stage (except the last stage had two); a par-
ticipants’ test data was excluded if the participant missed two
or more catch trials (n = 5). Finally, test phases were also
excluded if the corresponding study phases were not passed
in the allotted time (13% of remaining data).

Recurrent neural networks. Standard sequence-to-
sequence recurrent neural networks (RNNs; Fig. 1) failed
to generalize from the study set to the test set. RNNs were
trained using supervised learning on the 14 study instructions
and evaluated on the test instructions (Fig. 2), using the
best overall architecture from Lake and Baroni (2018) on
the related SCAN benchmark (2-layer LSTM encoder and
decoder, 200 hidden units per layer, a dropout probability
of 0.5, no attention). This network (Fig. 1) consists of two
neural networks working together: an encoder RNN that
processes the instruction and embeds it as a vector, and a
decoder RNN that decodes this vector as a sequence of output
symbols. Another top architecture from Lake and Baroni
was also evaluated (1-layer LSTM encoder and decoder, 100
hidden units per layer, dropout 0.1, with attention). The
training setup mimicked Lake and Baroni but with 10,000
instruction presentations, corresponding to about 700 passes
through the training data (epochs). Several variants of the
architectures were also trained, repeatedly reducing the
number of hidden units by half until there were only three
hidden units per layer. Averaged across five random seeds,
no architecture generalized better than 2.5% correct on the

test instructions, confirming Lake and Baroni’s conclusion
that seq2seq RNNs struggle with few-shot learning and
systematic generalization.

Results. Human participants showed an impressive ability
to learn functions from limited experience and generalize to
novel inputs, as summarized in Fig. 2. In the first three
stages, performance was measured separately for each func-
tional term after exclusions through the above attention cri-
teria. Average performance across participants was 84.3%
correct (n = 25), counting sequences as correct only if every
output symbol was correct. Measured for individual func-
tions, accuracy was 88.0% (n = 25) for Function 1, 83.3%
(n = 24) for Function 2, and 86.4% (n = 22) for Function 3.1

Participants were also able to compose functions together
to interpret novel sequences of instructions. In the final stage,
accuracy on complex instructions was 76.0% (n = 20). Peo-
ple could generalize to longer and more complex instructions
than previously observed, an ability that seq2seq neural net-
works particularly struggle with (Lake & Baroni, 2018). Dur-
ing the study phase, the most complex instruction consisted
of five input pseudowords requiring two function composi-
tions, producing four output symbols. At test, most partici-
pants could successfully go beyond this, correctly processing
six input pseudowords requiring three function compositions,
producing six output symbols (72.5% correct).

The pattern of errors showcases intriguing alternative hy-
potheses that participants adopted. Some errors were sug-
gestive of inductive biases and assumptions that people bring
to the learning task—principles that are reasonable a priori
and consistent with some but not all of the provided demon-
strations. For instance, many errors can be characterized by
a bias we term “one-to-one,” the assumption that each input

1The number of participants varies since data was included on
the basis of passing the study phase. For comparison, the overall
accuracy with no exclusions at all was 72.0%.

Study instructions Test instructions

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 1

88%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 3

86%

86%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 2

88%

79%

●●●●
●●●●
●●●●
●●●●●●
●●●●●●

Training examples

zup fep kiki lug

wif kiki zup fep

lug kiki wif blicket zup

zup blicket wif kiki dax fep

zup blicket zup kiki zup fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function compositions

85%

65%

70%

75%

85%

Figure 2: Few-shot learning of instructions in Exp. 1. Participants learned to execute instructions in a novel language of pseudowords by
producing sequences of colored circles. Generalization performance is shown next to each test instruction, as the percent correct across
participants. The pseudowords and colors were randomized for each participant; the figure illustrates an example of such an assignment.

presented in random order.
We used several strategies to ensure that our participants

were paying attention. First, before the experiment, partici-
pants practiced using the response interface and had to pass
an instructions quiz; they cycled through the quiz until they
passed it. Second, catch trials were included during the test
phases, probing the study items rather than new items, with
the answers clearly presented on the screen above. There was
one catch trial per stage (except the last stage had two); a par-
ticipants’ test data was excluded if the participant missed two
or more catch trials (n = 5). Finally, test phases were also
excluded if the corresponding study phases were not passed
in the allotted time (13% of remaining data).

Recurrent neural networks. Standard sequence-to-
sequence recurrent neural networks (RNNs; Fig. 1) failed
to generalize from the study set to the test set. RNNs were
trained using supervised learning on the 14 study instructions
and evaluated on the test instructions (Fig. 2), using the
best overall architecture from Lake and Baroni (2018) on
the related SCAN benchmark (2-layer LSTM encoder and
decoder, 200 hidden units per layer, a dropout probability
of 0.5, no attention). This network (Fig. 1) consists of two
neural networks working together: an encoder RNN that
processes the instruction and embeds it as a vector, and a
decoder RNN that decodes this vector as a sequence of output
symbols. Another top architecture from Lake and Baroni
was also evaluated (1-layer LSTM encoder and decoder, 100
hidden units per layer, dropout 0.1, with attention). The
training setup mimicked Lake and Baroni but with 10,000
instruction presentations, corresponding to about 700 passes
through the training data (epochs). Several variants of the
architectures were also trained, repeatedly reducing the
number of hidden units by half until there were only three
hidden units per layer. Averaged across five random seeds,
no architecture generalized better than 2.5% correct on the

test instructions, confirming Lake and Baroni’s conclusion
that seq2seq RNNs struggle with few-shot learning and
systematic generalization.

Results. Human participants showed an impressive ability
to learn functions from limited experience and generalize to
novel inputs, as summarized in Fig. 2. In the first three
stages, performance was measured separately for each func-
tional term after exclusions through the above attention cri-
teria. Average performance across participants was 84.3%
correct (n = 25), counting sequences as correct only if every
output symbol was correct. Measured for individual func-
tions, accuracy was 88.0% (n = 25) for Function 1, 83.3%
(n = 24) for Function 2, and 86.4% (n = 22) for Function 3.1

Participants were also able to compose functions together
to interpret novel sequences of instructions. In the final stage,
accuracy on complex instructions was 76.0% (n = 20). Peo-
ple could generalize to longer and more complex instructions
than previously observed, an ability that seq2seq neural net-
works particularly struggle with (Lake & Baroni, 2018). Dur-
ing the study phase, the most complex instruction consisted
of five input pseudowords requiring two function composi-
tions, producing four output symbols. At test, most partici-
pants could successfully go beyond this, correctly processing
six input pseudowords requiring three function compositions,
producing six output symbols (72.5% correct).

The pattern of errors showcases intriguing alternative hy-
potheses that participants adopted. Some errors were sug-
gestive of inductive biases and assumptions that people bring
to the learning task—principles that are reasonable a priori
and consistent with some but not all of the provided demon-
strations. For instance, many errors can be characterized by
a bias we term “one-to-one,” the assumption that each input

1The number of participants varies since data was included on
the basis of passing the study phase. For comparison, the overall
accuracy with no exclusions at all was 72.0%.

Study instructions Test instructions

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 1

88%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 3

86%

86%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 2

88%

79%

●●●●
●●●●
●●●●
●●●●●●
●●●●●●

Training examples

zup fep kiki lug

wif kiki zup fep

lug kiki wif blicket zup

zup blicket wif kiki dax fep

zup blicket zup kiki zup fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function compositions

85%

65%

70%

75%

85%

Figure 2: Few-shot learning of instructions in Exp. 1. Participants learned to execute instructions in a novel language of pseudowords by
producing sequences of colored circles. Generalization performance is shown next to each test instruction, as the percent correct across
participants. The pseudowords and colors were randomized for each participant; the figure illustrates an example of such an assignment.

presented in random order.
We used several strategies to ensure that our participants

were paying attention. First, before the experiment, partici-
pants practiced using the response interface and had to pass
an instructions quiz; they cycled through the quiz until they
passed it. Second, catch trials were included during the test
phases, probing the study items rather than new items, with
the answers clearly presented on the screen above. There was
one catch trial per stage (except the last stage had two); a par-
ticipants’ test data was excluded if the participant missed two
or more catch trials (n = 5). Finally, test phases were also
excluded if the corresponding study phases were not passed
in the allotted time (13% of remaining data).

Recurrent neural networks. Standard sequence-to-
sequence recurrent neural networks (RNNs; Fig. 1) failed
to generalize from the study set to the test set. RNNs were
trained using supervised learning on the 14 study instructions
and evaluated on the test instructions (Fig. 2), using the
best overall architecture from Lake and Baroni (2018) on
the related SCAN benchmark (2-layer LSTM encoder and
decoder, 200 hidden units per layer, a dropout probability
of 0.5, no attention). This network (Fig. 1) consists of two
neural networks working together: an encoder RNN that
processes the instruction and embeds it as a vector, and a
decoder RNN that decodes this vector as a sequence of output
symbols. Another top architecture from Lake and Baroni
was also evaluated (1-layer LSTM encoder and decoder, 100
hidden units per layer, dropout 0.1, with attention). The
training setup mimicked Lake and Baroni but with 10,000
instruction presentations, corresponding to about 700 passes
through the training data (epochs). Several variants of the
architectures were also trained, repeatedly reducing the
number of hidden units by half until there were only three
hidden units per layer. Averaged across five random seeds,
no architecture generalized better than 2.5% correct on the

test instructions, confirming Lake and Baroni’s conclusion
that seq2seq RNNs struggle with few-shot learning and
systematic generalization.

Results. Human participants showed an impressive ability
to learn functions from limited experience and generalize to
novel inputs, as summarized in Fig. 2. In the first three
stages, performance was measured separately for each func-
tional term after exclusions through the above attention cri-
teria. Average performance across participants was 84.3%
correct (n = 25), counting sequences as correct only if every
output symbol was correct. Measured for individual func-
tions, accuracy was 88.0% (n = 25) for Function 1, 83.3%
(n = 24) for Function 2, and 86.4% (n = 22) for Function 3.1

Participants were also able to compose functions together
to interpret novel sequences of instructions. In the final stage,
accuracy on complex instructions was 76.0% (n = 20). Peo-
ple could generalize to longer and more complex instructions
than previously observed, an ability that seq2seq neural net-
works particularly struggle with (Lake & Baroni, 2018). Dur-
ing the study phase, the most complex instruction consisted
of five input pseudowords requiring two function composi-
tions, producing four output symbols. At test, most partici-
pants could successfully go beyond this, correctly processing
six input pseudowords requiring three function compositions,
producing six output symbols (72.5% correct).

The pattern of errors showcases intriguing alternative hy-
potheses that participants adopted. Some errors were sug-
gestive of inductive biases and assumptions that people bring
to the learning task—principles that are reasonable a priori
and consistent with some but not all of the provided demon-
strations. For instance, many errors can be characterized by
a bias we term “one-to-one,” the assumption that each input

1The number of participants varies since data was included on
the basis of passing the study phase. For comparison, the overall
accuracy with no exclusions at all was 72.0%.

Support

Query Correct answer

Training

Test

Results: Learning “blicket”-surround

“dax blicket zup” “zup blicket lug”

●●●●●● ●●●

●●● ●●●

●●●

●●● ●●●

●●● ●●●

●●● ●●●

dax blicket zup (21) dax blicket zup (1)

dax blicket zup (1) dax blicket zup (1)

INPUT: zup blicket lug; OUTPUT: (target)

zup blicket lug (19) zup blicket lug (1)

zup blicket lug (1) zup blicket lug (1)

zup blicket lug (1) zup blicket lug (1)

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v...

2 of 2 10/24/18, 2:53 PM

●●●●●● ●●●

●●● ●●●

●●●

●●● ●●●

●●● ●●●

●●● ●●●

dax blicket zup (21) dax blicket zup (1)

dax blicket zup (1) dax blicket zup (1)

INPUT: zup blicket lug; OUTPUT: (target)

zup blicket lug (19) zup blicket lug (1)

zup blicket lug (1) zup blicket lug (1)

zup blicket lug (1) zup blicket lug (1)

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v...

2 of 2 10/24/18, 2:53 PM

●●●●●● ●●●

●●● ●●●

●●●

●●● ●●●

●●● ●●●

●●● ●●●

dax blicket zup (21) dax blicket zup (1)

dax blicket zup (1) dax blicket zup (1)

INPUT: zup blicket lug; OUTPUT: (target)

zup blicket lug (19) zup blicket lug (1)

zup blicket lug (1) zup blicket lug (1)

zup blicket lug (1) zup blicket lug (1)

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v...

2 of 2 10/24/18, 2:53 PM

Accuracy: 83% (n=24)

one-to-one

one-to-one

correct answer correct answer

one-to-one

one-to-one

one-to-one

Possible inductive bias: “one-to-one,” a preference that input symbols can be directly
translated one-by-one to output symbols, without complex function transformations

response frequency

Training

Test

Results: Learning “blicket”-surround

“dax blicket zup” “zup blicket lug”

●●●●●● ●●●

●●● ●●●

●●●

●●● ●●●

●●● ●●●

●●● ●●●

dax blicket zup (21) dax blicket zup (1)

dax blicket zup (1) dax blicket zup (1)

INPUT: zup blicket lug; OUTPUT: (target)

zup blicket lug (19) zup blicket lug (1)

zup blicket lug (1) zup blicket lug (1)

zup blicket lug (1) zup blicket lug (1)

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v...

2 of 2 10/24/18, 2:53 PM

●●●●●● ●●●

●●● ●●●

●●●

●●● ●●●

●●● ●●●

●●● ●●●

dax blicket zup (21) dax blicket zup (1)

dax blicket zup (1) dax blicket zup (1)

INPUT: zup blicket lug; OUTPUT: (target)

zup blicket lug (19) zup blicket lug (1)

zup blicket lug (1) zup blicket lug (1)

zup blicket lug (1) zup blicket lug (1)

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v...

2 of 2 10/24/18, 2:53 PM

●●●●●● ●●●

●●● ●●●

●●●

●●● ●●●

●●● ●●●

●●● ●●●

dax blicket zup (21) dax blicket zup (1)

dax blicket zup (1) dax blicket zup (1)

INPUT: zup blicket lug; OUTPUT: (target)

zup blicket lug (19) zup blicket lug (1)

zup blicket lug (1) zup blicket lug (1)

zup blicket lug (1) zup blicket lug (1)

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v...

2 of 2 10/24/18, 2:53 PM

Accuracy: 83% (n=24)

one-to-one

one-to-one

correct answer correct answer

one-to-one

one-to-one

one-to-one

Possible inductive bias: “one-to-one,” a preference that input symbols can be directly
translated one-by-one to output symbols, without complex function transformations

response frequency

“1-to-1” bias?

85% participants

Study instructions Test instructions

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 1

88%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 3

86%

86%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 2

88%

79%

●●●●
●●●●
●●●●
●●●●●●
●●●●●●

Training examples

zup fep kiki lug

wif kiki zup fep

lug kiki wif blicket zup

zup blicket wif kiki dax fep

zup blicket zup kiki zup fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function compositions

85%

65%

70%

75%

85%

Figure 2: Few-shot learning of instructions in Exp. 1. Participants learned to execute instructions in a novel language of pseudowords by
producing sequences of colored circles. Generalization performance is shown next to each test instruction, as the percent correct across
participants. The pseudowords and colors were randomized for each participant; the figure illustrates an example of such an assignment.

presented in random order.
We used several strategies to ensure that our participants

were paying attention. First, before the experiment, partici-
pants practiced using the response interface and had to pass
an instructions quiz; they cycled through the quiz until they
passed it. Second, catch trials were included during the test
phases, probing the study items rather than new items, with
the answers clearly presented on the screen above. There was
one catch trial per stage (except the last stage had two); a par-
ticipants’ test data was excluded if the participant missed two
or more catch trials (n = 5). Finally, test phases were also
excluded if the corresponding study phases were not passed
in the allotted time (13% of remaining data).

Recurrent neural networks. Standard sequence-to-
sequence recurrent neural networks (RNNs; Fig. 1) failed
to generalize from the study set to the test set. RNNs were
trained using supervised learning on the 14 study instructions
and evaluated on the test instructions (Fig. 2), using the
best overall architecture from Lake and Baroni (2018) on
the related SCAN benchmark (2-layer LSTM encoder and
decoder, 200 hidden units per layer, a dropout probability
of 0.5, no attention). This network (Fig. 1) consists of two
neural networks working together: an encoder RNN that
processes the instruction and embeds it as a vector, and a
decoder RNN that decodes this vector as a sequence of output
symbols. Another top architecture from Lake and Baroni
was also evaluated (1-layer LSTM encoder and decoder, 100
hidden units per layer, dropout 0.1, with attention). The
training setup mimicked Lake and Baroni but with 10,000
instruction presentations, corresponding to about 700 passes
through the training data (epochs). Several variants of the
architectures were also trained, repeatedly reducing the
number of hidden units by half until there were only three
hidden units per layer. Averaged across five random seeds,
no architecture generalized better than 2.5% correct on the

test instructions, confirming Lake and Baroni’s conclusion
that seq2seq RNNs struggle with few-shot learning and
systematic generalization.

Results. Human participants showed an impressive ability
to learn functions from limited experience and generalize to
novel inputs, as summarized in Fig. 2. In the first three
stages, performance was measured separately for each func-
tional term after exclusions through the above attention cri-
teria. Average performance across participants was 84.3%
correct (n = 25), counting sequences as correct only if every
output symbol was correct. Measured for individual func-
tions, accuracy was 88.0% (n = 25) for Function 1, 83.3%
(n = 24) for Function 2, and 86.4% (n = 22) for Function 3.1

Participants were also able to compose functions together
to interpret novel sequences of instructions. In the final stage,
accuracy on complex instructions was 76.0% (n = 20). Peo-
ple could generalize to longer and more complex instructions
than previously observed, an ability that seq2seq neural net-
works particularly struggle with (Lake & Baroni, 2018). Dur-
ing the study phase, the most complex instruction consisted
of five input pseudowords requiring two function composi-
tions, producing four output symbols. At test, most partici-
pants could successfully go beyond this, correctly processing
six input pseudowords requiring three function compositions,
producing six output symbols (72.5% correct).

The pattern of errors showcases intriguing alternative hy-
potheses that participants adopted. Some errors were sug-
gestive of inductive biases and assumptions that people bring
to the learning task—principles that are reasonable a priori
and consistent with some but not all of the provided demon-
strations. For instance, many errors can be characterized by
a bias we term “one-to-one,” the assumption that each input

1The number of participants varies since data was included on
the basis of passing the study phase. For comparison, the overall
accuracy with no exclusions at all was 72.0%.

?
Representative
mistake

Experiment 1: Results

Study instructions Test instructions

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 1

88%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 3

86%

86%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 2

88%

79%

●●●●
●●●●
●●●●
●●●●●●
●●●●●●

Training examples

zup fep kiki lug

wif kiki zup fep

lug kiki wif blicket zup

zup blicket wif kiki dax fep

zup blicket zup kiki zup fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function compositions

85%

65%

70%

75%

85%

Figure 2: Few-shot learning of instructions in Exp. 1. Participants learned to execute instructions in a novel language of pseudowords by
producing sequences of colored circles. Generalization performance is shown next to each test instruction, as the percent correct across
participants. The pseudowords and colors were randomized for each participant; the figure illustrates an example of such an assignment.

presented in random order.
We used several strategies to ensure that our participants

were paying attention. First, before the experiment, partici-
pants practiced using the response interface and had to pass
an instructions quiz; they cycled through the quiz until they
passed it. Second, catch trials were included during the test
phases, probing the study items rather than new items, with
the answers clearly presented on the screen above. There was
one catch trial per stage (except the last stage had two); a par-
ticipants’ test data was excluded if the participant missed two
or more catch trials (n = 5). Finally, test phases were also
excluded if the corresponding study phases were not passed
in the allotted time (13% of remaining data).

Recurrent neural networks. Standard sequence-to-
sequence recurrent neural networks (RNNs; Fig. 1) failed
to generalize from the study set to the test set. RNNs were
trained using supervised learning on the 14 study instructions
and evaluated on the test instructions (Fig. 2), using the
best overall architecture from Lake and Baroni (2018) on
the related SCAN benchmark (2-layer LSTM encoder and
decoder, 200 hidden units per layer, a dropout probability
of 0.5, no attention). This network (Fig. 1) consists of two
neural networks working together: an encoder RNN that
processes the instruction and embeds it as a vector, and a
decoder RNN that decodes this vector as a sequence of output
symbols. Another top architecture from Lake and Baroni
was also evaluated (1-layer LSTM encoder and decoder, 100
hidden units per layer, dropout 0.1, with attention). The
training setup mimicked Lake and Baroni but with 10,000
instruction presentations, corresponding to about 700 passes
through the training data (epochs). Several variants of the
architectures were also trained, repeatedly reducing the
number of hidden units by half until there were only three
hidden units per layer. Averaged across five random seeds,
no architecture generalized better than 2.5% correct on the

test instructions, confirming Lake and Baroni’s conclusion
that seq2seq RNNs struggle with few-shot learning and
systematic generalization.

Results. Human participants showed an impressive ability
to learn functions from limited experience and generalize to
novel inputs, as summarized in Fig. 2. In the first three
stages, performance was measured separately for each func-
tional term after exclusions through the above attention cri-
teria. Average performance across participants was 84.3%
correct (n = 25), counting sequences as correct only if every
output symbol was correct. Measured for individual func-
tions, accuracy was 88.0% (n = 25) for Function 1, 83.3%
(n = 24) for Function 2, and 86.4% (n = 22) for Function 3.1

Participants were also able to compose functions together
to interpret novel sequences of instructions. In the final stage,
accuracy on complex instructions was 76.0% (n = 20). Peo-
ple could generalize to longer and more complex instructions
than previously observed, an ability that seq2seq neural net-
works particularly struggle with (Lake & Baroni, 2018). Dur-
ing the study phase, the most complex instruction consisted
of five input pseudowords requiring two function composi-
tions, producing four output symbols. At test, most partici-
pants could successfully go beyond this, correctly processing
six input pseudowords requiring three function compositions,
producing six output symbols (72.5% correct).

The pattern of errors showcases intriguing alternative hy-
potheses that participants adopted. Some errors were sug-
gestive of inductive biases and assumptions that people bring
to the learning task—principles that are reasonable a priori
and consistent with some but not all of the provided demon-
strations. For instance, many errors can be characterized by
a bias we term “one-to-one,” the assumption that each input

1The number of participants varies since data was included on
the basis of passing the study phase. For comparison, the overall
accuracy with no exclusions at all was 72.0%.

?

Study instructions Test instructions

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 1

88%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 3

86%

86%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 2

88%

79%

●●●●
●●●●
●●●●
●●●●●●
●●●●●●

Training examples

zup fep kiki lug

wif kiki zup fep

lug kiki wif blicket zup

zup blicket wif kiki dax fep

zup blicket zup kiki zup fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function compositions

85%

65%

70%

75%

85%

Figure 2: Few-shot learning of instructions in Exp. 1. Participants learned to execute instructions in a novel language of pseudowords by
producing sequences of colored circles. Generalization performance is shown next to each test instruction, as the percent correct across
participants. The pseudowords and colors were randomized for each participant; the figure illustrates an example of such an assignment.

presented in random order.
We used several strategies to ensure that our participants

were paying attention. First, before the experiment, partici-
pants practiced using the response interface and had to pass
an instructions quiz; they cycled through the quiz until they
passed it. Second, catch trials were included during the test
phases, probing the study items rather than new items, with
the answers clearly presented on the screen above. There was
one catch trial per stage (except the last stage had two); a par-
ticipants’ test data was excluded if the participant missed two
or more catch trials (n = 5). Finally, test phases were also
excluded if the corresponding study phases were not passed
in the allotted time (13% of remaining data).

Recurrent neural networks. Standard sequence-to-
sequence recurrent neural networks (RNNs; Fig. 1) failed
to generalize from the study set to the test set. RNNs were
trained using supervised learning on the 14 study instructions
and evaluated on the test instructions (Fig. 2), using the
best overall architecture from Lake and Baroni (2018) on
the related SCAN benchmark (2-layer LSTM encoder and
decoder, 200 hidden units per layer, a dropout probability
of 0.5, no attention). This network (Fig. 1) consists of two
neural networks working together: an encoder RNN that
processes the instruction and embeds it as a vector, and a
decoder RNN that decodes this vector as a sequence of output
symbols. Another top architecture from Lake and Baroni
was also evaluated (1-layer LSTM encoder and decoder, 100
hidden units per layer, dropout 0.1, with attention). The
training setup mimicked Lake and Baroni but with 10,000
instruction presentations, corresponding to about 700 passes
through the training data (epochs). Several variants of the
architectures were also trained, repeatedly reducing the
number of hidden units by half until there were only three
hidden units per layer. Averaged across five random seeds,
no architecture generalized better than 2.5% correct on the

test instructions, confirming Lake and Baroni’s conclusion
that seq2seq RNNs struggle with few-shot learning and
systematic generalization.

Results. Human participants showed an impressive ability
to learn functions from limited experience and generalize to
novel inputs, as summarized in Fig. 2. In the first three
stages, performance was measured separately for each func-
tional term after exclusions through the above attention cri-
teria. Average performance across participants was 84.3%
correct (n = 25), counting sequences as correct only if every
output symbol was correct. Measured for individual func-
tions, accuracy was 88.0% (n = 25) for Function 1, 83.3%
(n = 24) for Function 2, and 86.4% (n = 22) for Function 3.1

Participants were also able to compose functions together
to interpret novel sequences of instructions. In the final stage,
accuracy on complex instructions was 76.0% (n = 20). Peo-
ple could generalize to longer and more complex instructions
than previously observed, an ability that seq2seq neural net-
works particularly struggle with (Lake & Baroni, 2018). Dur-
ing the study phase, the most complex instruction consisted
of five input pseudowords requiring two function composi-
tions, producing four output symbols. At test, most partici-
pants could successfully go beyond this, correctly processing
six input pseudowords requiring three function compositions,
producing six output symbols (72.5% correct).

The pattern of errors showcases intriguing alternative hy-
potheses that participants adopted. Some errors were sug-
gestive of inductive biases and assumptions that people bring
to the learning task—principles that are reasonable a priori
and consistent with some but not all of the provided demon-
strations. For instance, many errors can be characterized by
a bias we term “one-to-one,” the assumption that each input

1The number of participants varies since data was included on
the basis of passing the study phase. For comparison, the overall
accuracy with no exclusions at all was 72.0%.

Study instructions Test instructions

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 1

88%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 3

86%

86%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 2

88%

79%

●●●●
●●●●
●●●●
●●●●●●
●●●●●●

Training examples

zup fep kiki lug

wif kiki zup fep

lug kiki wif blicket zup

zup blicket wif kiki dax fep

zup blicket zup kiki zup fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function compositions

85%

65%

70%

75%

85%

Figure 2: Few-shot learning of instructions in Exp. 1. Participants learned to execute instructions in a novel language of pseudowords by
producing sequences of colored circles. Generalization performance is shown next to each test instruction, as the percent correct across
participants. The pseudowords and colors were randomized for each participant; the figure illustrates an example of such an assignment.

presented in random order.
We used several strategies to ensure that our participants

were paying attention. First, before the experiment, partici-
pants practiced using the response interface and had to pass
an instructions quiz; they cycled through the quiz until they
passed it. Second, catch trials were included during the test
phases, probing the study items rather than new items, with
the answers clearly presented on the screen above. There was
one catch trial per stage (except the last stage had two); a par-
ticipants’ test data was excluded if the participant missed two
or more catch trials (n = 5). Finally, test phases were also
excluded if the corresponding study phases were not passed
in the allotted time (13% of remaining data).

Recurrent neural networks. Standard sequence-to-
sequence recurrent neural networks (RNNs; Fig. 1) failed
to generalize from the study set to the test set. RNNs were
trained using supervised learning on the 14 study instructions
and evaluated on the test instructions (Fig. 2), using the
best overall architecture from Lake and Baroni (2018) on
the related SCAN benchmark (2-layer LSTM encoder and
decoder, 200 hidden units per layer, a dropout probability
of 0.5, no attention). This network (Fig. 1) consists of two
neural networks working together: an encoder RNN that
processes the instruction and embeds it as a vector, and a
decoder RNN that decodes this vector as a sequence of output
symbols. Another top architecture from Lake and Baroni
was also evaluated (1-layer LSTM encoder and decoder, 100
hidden units per layer, dropout 0.1, with attention). The
training setup mimicked Lake and Baroni but with 10,000
instruction presentations, corresponding to about 700 passes
through the training data (epochs). Several variants of the
architectures were also trained, repeatedly reducing the
number of hidden units by half until there were only three
hidden units per layer. Averaged across five random seeds,
no architecture generalized better than 2.5% correct on the

test instructions, confirming Lake and Baroni’s conclusion
that seq2seq RNNs struggle with few-shot learning and
systematic generalization.

Results. Human participants showed an impressive ability
to learn functions from limited experience and generalize to
novel inputs, as summarized in Fig. 2. In the first three
stages, performance was measured separately for each func-
tional term after exclusions through the above attention cri-
teria. Average performance across participants was 84.3%
correct (n = 25), counting sequences as correct only if every
output symbol was correct. Measured for individual func-
tions, accuracy was 88.0% (n = 25) for Function 1, 83.3%
(n = 24) for Function 2, and 86.4% (n = 22) for Function 3.1

Participants were also able to compose functions together
to interpret novel sequences of instructions. In the final stage,
accuracy on complex instructions was 76.0% (n = 20). Peo-
ple could generalize to longer and more complex instructions
than previously observed, an ability that seq2seq neural net-
works particularly struggle with (Lake & Baroni, 2018). Dur-
ing the study phase, the most complex instruction consisted
of five input pseudowords requiring two function composi-
tions, producing four output symbols. At test, most partici-
pants could successfully go beyond this, correctly processing
six input pseudowords requiring three function compositions,
producing six output symbols (72.5% correct).

The pattern of errors showcases intriguing alternative hy-
potheses that participants adopted. Some errors were sug-
gestive of inductive biases and assumptions that people bring
to the learning task—principles that are reasonable a priori
and consistent with some but not all of the provided demon-
strations. For instance, many errors can be characterized by
a bias we term “one-to-one,” the assumption that each input

1The number of participants varies since data was included on
the basis of passing the study phase. For comparison, the overall
accuracy with no exclusions at all was 72.0%.

Study instructions Test instructions

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 1

88%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 3

86%

86%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 2

88%

79%

●●●●
●●●●
●●●●
●●●●●●
●●●●●●

Training examples

zup fep kiki lug

wif kiki zup fep

lug kiki wif blicket zup

zup blicket wif kiki dax fep

zup blicket zup kiki zup fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function compositions

85%

65%

70%

75%

85%

Figure 2: Few-shot learning of instructions in Exp. 1. Participants learned to execute instructions in a novel language of pseudowords by
producing sequences of colored circles. Generalization performance is shown next to each test instruction, as the percent correct across
participants. The pseudowords and colors were randomized for each participant; the figure illustrates an example of such an assignment.

presented in random order.
We used several strategies to ensure that our participants

were paying attention. First, before the experiment, partici-
pants practiced using the response interface and had to pass
an instructions quiz; they cycled through the quiz until they
passed it. Second, catch trials were included during the test
phases, probing the study items rather than new items, with
the answers clearly presented on the screen above. There was
one catch trial per stage (except the last stage had two); a par-
ticipants’ test data was excluded if the participant missed two
or more catch trials (n = 5). Finally, test phases were also
excluded if the corresponding study phases were not passed
in the allotted time (13% of remaining data).

Recurrent neural networks. Standard sequence-to-
sequence recurrent neural networks (RNNs; Fig. 1) failed
to generalize from the study set to the test set. RNNs were
trained using supervised learning on the 14 study instructions
and evaluated on the test instructions (Fig. 2), using the
best overall architecture from Lake and Baroni (2018) on
the related SCAN benchmark (2-layer LSTM encoder and
decoder, 200 hidden units per layer, a dropout probability
of 0.5, no attention). This network (Fig. 1) consists of two
neural networks working together: an encoder RNN that
processes the instruction and embeds it as a vector, and a
decoder RNN that decodes this vector as a sequence of output
symbols. Another top architecture from Lake and Baroni
was also evaluated (1-layer LSTM encoder and decoder, 100
hidden units per layer, dropout 0.1, with attention). The
training setup mimicked Lake and Baroni but with 10,000
instruction presentations, corresponding to about 700 passes
through the training data (epochs). Several variants of the
architectures were also trained, repeatedly reducing the
number of hidden units by half until there were only three
hidden units per layer. Averaged across five random seeds,
no architecture generalized better than 2.5% correct on the

test instructions, confirming Lake and Baroni’s conclusion
that seq2seq RNNs struggle with few-shot learning and
systematic generalization.

Results. Human participants showed an impressive ability
to learn functions from limited experience and generalize to
novel inputs, as summarized in Fig. 2. In the first three
stages, performance was measured separately for each func-
tional term after exclusions through the above attention cri-
teria. Average performance across participants was 84.3%
correct (n = 25), counting sequences as correct only if every
output symbol was correct. Measured for individual func-
tions, accuracy was 88.0% (n = 25) for Function 1, 83.3%
(n = 24) for Function 2, and 86.4% (n = 22) for Function 3.1

Participants were also able to compose functions together
to interpret novel sequences of instructions. In the final stage,
accuracy on complex instructions was 76.0% (n = 20). Peo-
ple could generalize to longer and more complex instructions
than previously observed, an ability that seq2seq neural net-
works particularly struggle with (Lake & Baroni, 2018). Dur-
ing the study phase, the most complex instruction consisted
of five input pseudowords requiring two function composi-
tions, producing four output symbols. At test, most partici-
pants could successfully go beyond this, correctly processing
six input pseudowords requiring three function compositions,
producing six output symbols (72.5% correct).

The pattern of errors showcases intriguing alternative hy-
potheses that participants adopted. Some errors were sug-
gestive of inductive biases and assumptions that people bring
to the learning task—principles that are reasonable a priori
and consistent with some but not all of the provided demon-
strations. For instance, many errors can be characterized by
a bias we term “one-to-one,” the assumption that each input

1The number of participants varies since data was included on
the basis of passing the study phase. For comparison, the overall
accuracy with no exclusions at all was 72.0%.

Study instructions Test instructions

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 1

88%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 3

86%

86%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 2

88%

79%

●●●●
●●●●
●●●●
●●●●●●
●●●●●●

Training examples

zup fep kiki lug

wif kiki zup fep

lug kiki wif blicket zup

zup blicket wif kiki dax fep

zup blicket zup kiki zup fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function compositions

85%

65%

70%

75%

85%

Figure 2: Few-shot learning of instructions in Exp. 1. Participants learned to execute instructions in a novel language of pseudowords by
producing sequences of colored circles. Generalization performance is shown next to each test instruction, as the percent correct across
participants. The pseudowords and colors were randomized for each participant; the figure illustrates an example of such an assignment.

presented in random order.
We used several strategies to ensure that our participants

were paying attention. First, before the experiment, partici-
pants practiced using the response interface and had to pass
an instructions quiz; they cycled through the quiz until they
passed it. Second, catch trials were included during the test
phases, probing the study items rather than new items, with
the answers clearly presented on the screen above. There was
one catch trial per stage (except the last stage had two); a par-
ticipants’ test data was excluded if the participant missed two
or more catch trials (n = 5). Finally, test phases were also
excluded if the corresponding study phases were not passed
in the allotted time (13% of remaining data).

Recurrent neural networks. Standard sequence-to-
sequence recurrent neural networks (RNNs; Fig. 1) failed
to generalize from the study set to the test set. RNNs were
trained using supervised learning on the 14 study instructions
and evaluated on the test instructions (Fig. 2), using the
best overall architecture from Lake and Baroni (2018) on
the related SCAN benchmark (2-layer LSTM encoder and
decoder, 200 hidden units per layer, a dropout probability
of 0.5, no attention). This network (Fig. 1) consists of two
neural networks working together: an encoder RNN that
processes the instruction and embeds it as a vector, and a
decoder RNN that decodes this vector as a sequence of output
symbols. Another top architecture from Lake and Baroni
was also evaluated (1-layer LSTM encoder and decoder, 100
hidden units per layer, dropout 0.1, with attention). The
training setup mimicked Lake and Baroni but with 10,000
instruction presentations, corresponding to about 700 passes
through the training data (epochs). Several variants of the
architectures were also trained, repeatedly reducing the
number of hidden units by half until there were only three
hidden units per layer. Averaged across five random seeds,
no architecture generalized better than 2.5% correct on the

test instructions, confirming Lake and Baroni’s conclusion
that seq2seq RNNs struggle with few-shot learning and
systematic generalization.

Results. Human participants showed an impressive ability
to learn functions from limited experience and generalize to
novel inputs, as summarized in Fig. 2. In the first three
stages, performance was measured separately for each func-
tional term after exclusions through the above attention cri-
teria. Average performance across participants was 84.3%
correct (n = 25), counting sequences as correct only if every
output symbol was correct. Measured for individual func-
tions, accuracy was 88.0% (n = 25) for Function 1, 83.3%
(n = 24) for Function 2, and 86.4% (n = 22) for Function 3.1

Participants were also able to compose functions together
to interpret novel sequences of instructions. In the final stage,
accuracy on complex instructions was 76.0% (n = 20). Peo-
ple could generalize to longer and more complex instructions
than previously observed, an ability that seq2seq neural net-
works particularly struggle with (Lake & Baroni, 2018). Dur-
ing the study phase, the most complex instruction consisted
of five input pseudowords requiring two function composi-
tions, producing four output symbols. At test, most partici-
pants could successfully go beyond this, correctly processing
six input pseudowords requiring three function compositions,
producing six output symbols (72.5% correct).

The pattern of errors showcases intriguing alternative hy-
potheses that participants adopted. Some errors were sug-
gestive of inductive biases and assumptions that people bring
to the learning task—principles that are reasonable a priori
and consistent with some but not all of the provided demon-
strations. For instance, many errors can be characterized by
a bias we term “one-to-one,” the assumption that each input

1The number of participants varies since data was included on
the basis of passing the study phase. For comparison, the overall
accuracy with no exclusions at all was 72.0%.

Study instructions Test instructions

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 1

88%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 3

86%

86%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 2

88%

79%

●●●●
●●●●
●●●●
●●●●●●
●●●●●●

Training examples

zup fep kiki lug

wif kiki zup fep

lug kiki wif blicket zup

zup blicket wif kiki dax fep

zup blicket zup kiki zup fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function compositions

85%

65%

70%

75%

85%

Figure 2: Few-shot learning of instructions in Exp. 1. Participants learned to execute instructions in a novel language of pseudowords by
producing sequences of colored circles. Generalization performance is shown next to each test instruction, as the percent correct across
participants. The pseudowords and colors were randomized for each participant; the figure illustrates an example of such an assignment.

presented in random order.
We used several strategies to ensure that our participants

were paying attention. First, before the experiment, partici-
pants practiced using the response interface and had to pass
an instructions quiz; they cycled through the quiz until they
passed it. Second, catch trials were included during the test
phases, probing the study items rather than new items, with
the answers clearly presented on the screen above. There was
one catch trial per stage (except the last stage had two); a par-
ticipants’ test data was excluded if the participant missed two
or more catch trials (n = 5). Finally, test phases were also
excluded if the corresponding study phases were not passed
in the allotted time (13% of remaining data).

Recurrent neural networks. Standard sequence-to-
sequence recurrent neural networks (RNNs; Fig. 1) failed
to generalize from the study set to the test set. RNNs were
trained using supervised learning on the 14 study instructions
and evaluated on the test instructions (Fig. 2), using the
best overall architecture from Lake and Baroni (2018) on
the related SCAN benchmark (2-layer LSTM encoder and
decoder, 200 hidden units per layer, a dropout probability
of 0.5, no attention). This network (Fig. 1) consists of two
neural networks working together: an encoder RNN that
processes the instruction and embeds it as a vector, and a
decoder RNN that decodes this vector as a sequence of output
symbols. Another top architecture from Lake and Baroni
was also evaluated (1-layer LSTM encoder and decoder, 100
hidden units per layer, dropout 0.1, with attention). The
training setup mimicked Lake and Baroni but with 10,000
instruction presentations, corresponding to about 700 passes
through the training data (epochs). Several variants of the
architectures were also trained, repeatedly reducing the
number of hidden units by half until there were only three
hidden units per layer. Averaged across five random seeds,
no architecture generalized better than 2.5% correct on the

test instructions, confirming Lake and Baroni’s conclusion
that seq2seq RNNs struggle with few-shot learning and
systematic generalization.

Results. Human participants showed an impressive ability
to learn functions from limited experience and generalize to
novel inputs, as summarized in Fig. 2. In the first three
stages, performance was measured separately for each func-
tional term after exclusions through the above attention cri-
teria. Average performance across participants was 84.3%
correct (n = 25), counting sequences as correct only if every
output symbol was correct. Measured for individual func-
tions, accuracy was 88.0% (n = 25) for Function 1, 83.3%
(n = 24) for Function 2, and 86.4% (n = 22) for Function 3.1

Participants were also able to compose functions together
to interpret novel sequences of instructions. In the final stage,
accuracy on complex instructions was 76.0% (n = 20). Peo-
ple could generalize to longer and more complex instructions
than previously observed, an ability that seq2seq neural net-
works particularly struggle with (Lake & Baroni, 2018). Dur-
ing the study phase, the most complex instruction consisted
of five input pseudowords requiring two function composi-
tions, producing four output symbols. At test, most partici-
pants could successfully go beyond this, correctly processing
six input pseudowords requiring three function compositions,
producing six output symbols (72.5% correct).

The pattern of errors showcases intriguing alternative hy-
potheses that participants adopted. Some errors were sug-
gestive of inductive biases and assumptions that people bring
to the learning task—principles that are reasonable a priori
and consistent with some but not all of the provided demon-
strations. For instance, many errors can be characterized by
a bias we term “one-to-one,” the assumption that each input

1The number of participants varies since data was included on
the basis of passing the study phase. For comparison, the overall
accuracy with no exclusions at all was 72.0%.

Study instructions Test instructions

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 1

88%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 3

86%

86%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 2

88%

79%

●●●●
●●●●
●●●●
●●●●●●
●●●●●●

Training examples

zup fep kiki lug

wif kiki zup fep

lug kiki wif blicket zup

zup blicket wif kiki dax fep

zup blicket zup kiki zup fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function compositions

85%

65%

70%

75%

85%

Figure 2: Few-shot learning of instructions in Exp. 1. Participants learned to execute instructions in a novel language of pseudowords by
producing sequences of colored circles. Generalization performance is shown next to each test instruction, as the percent correct across
participants. The pseudowords and colors were randomized for each participant; the figure illustrates an example of such an assignment.

presented in random order.
We used several strategies to ensure that our participants

were paying attention. First, before the experiment, partici-
pants practiced using the response interface and had to pass
an instructions quiz; they cycled through the quiz until they
passed it. Second, catch trials were included during the test
phases, probing the study items rather than new items, with
the answers clearly presented on the screen above. There was
one catch trial per stage (except the last stage had two); a par-
ticipants’ test data was excluded if the participant missed two
or more catch trials (n = 5). Finally, test phases were also
excluded if the corresponding study phases were not passed
in the allotted time (13% of remaining data).

Recurrent neural networks. Standard sequence-to-
sequence recurrent neural networks (RNNs; Fig. 1) failed
to generalize from the study set to the test set. RNNs were
trained using supervised learning on the 14 study instructions
and evaluated on the test instructions (Fig. 2), using the
best overall architecture from Lake and Baroni (2018) on
the related SCAN benchmark (2-layer LSTM encoder and
decoder, 200 hidden units per layer, a dropout probability
of 0.5, no attention). This network (Fig. 1) consists of two
neural networks working together: an encoder RNN that
processes the instruction and embeds it as a vector, and a
decoder RNN that decodes this vector as a sequence of output
symbols. Another top architecture from Lake and Baroni
was also evaluated (1-layer LSTM encoder and decoder, 100
hidden units per layer, dropout 0.1, with attention). The
training setup mimicked Lake and Baroni but with 10,000
instruction presentations, corresponding to about 700 passes
through the training data (epochs). Several variants of the
architectures were also trained, repeatedly reducing the
number of hidden units by half until there were only three
hidden units per layer. Averaged across five random seeds,
no architecture generalized better than 2.5% correct on the

test instructions, confirming Lake and Baroni’s conclusion
that seq2seq RNNs struggle with few-shot learning and
systematic generalization.

Results. Human participants showed an impressive ability
to learn functions from limited experience and generalize to
novel inputs, as summarized in Fig. 2. In the first three
stages, performance was measured separately for each func-
tional term after exclusions through the above attention cri-
teria. Average performance across participants was 84.3%
correct (n = 25), counting sequences as correct only if every
output symbol was correct. Measured for individual func-
tions, accuracy was 88.0% (n = 25) for Function 1, 83.3%
(n = 24) for Function 2, and 86.4% (n = 22) for Function 3.1

Participants were also able to compose functions together
to interpret novel sequences of instructions. In the final stage,
accuracy on complex instructions was 76.0% (n = 20). Peo-
ple could generalize to longer and more complex instructions
than previously observed, an ability that seq2seq neural net-
works particularly struggle with (Lake & Baroni, 2018). Dur-
ing the study phase, the most complex instruction consisted
of five input pseudowords requiring two function composi-
tions, producing four output symbols. At test, most partici-
pants could successfully go beyond this, correctly processing
six input pseudowords requiring three function compositions,
producing six output symbols (72.5% correct).

The pattern of errors showcases intriguing alternative hy-
potheses that participants adopted. Some errors were sug-
gestive of inductive biases and assumptions that people bring
to the learning task—principles that are reasonable a priori
and consistent with some but not all of the provided demon-
strations. For instance, many errors can be characterized by
a bias we term “one-to-one,” the assumption that each input

1The number of participants varies since data was included on
the basis of passing the study phase. For comparison, the overall
accuracy with no exclusions at all was 72.0%.

Support

Query

Results: Function composition
Training

Test “wif kiki zup fep”

●●●● ●●●●

●●●● ●●●●

●●●●●●

●●●●●
●

●●●
●

●●●●● ●●●
●

●●●●●●

●●●●
●● ●●●●

●●●●
●●

●●●●
●

●●●●
●● ●●●●

●●●●

wif kiki zup fep (17) wif kiki zup fep (1)

wif kiki zup fep (1) wif kiki zup fep (1)

INPUT: zup blicket zup kiki zup fep; OUTPUT: (target)

zup blicket zup kiki zup
fep (15) zup blicket zup kiki zup

fep (3)

zup blicket zup kiki zup
fep (1) zup blicket zup kiki zup

fep (1)

INPUT: zup blicket wif kiki dax fep; OUTPUT: (target)

zup blicket wif kiki
dax fep (14) zup blicket wif kiki

dax fep (1)

zup blicket wif kiki
dax fep (1) zup blicket wif kiki

dax fep (1)

zup blicket wif kiki
dax fep (1) zup blicket wif kiki

dax fep (1)

zup blicket wif kiki
dax fep (1)

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v...

3 of 3 10/24/18, 3:28 PM

correct answer

iconic concatenation

Accuracy: 85% (n=20)

Results: Function composition
Training

Test “wif kiki zup fep”

●●●● ●●●●

●●●● ●●●●

●●●●●●

●●●●●
●

●●●
●

●●●●● ●●●
●

●●●●●●

●●●●
●● ●●●●

●●●●
●●

●●●●
●

●●●●
●● ●●●●

●●●●

wif kiki zup fep (17) wif kiki zup fep (1)

wif kiki zup fep (1) wif kiki zup fep (1)

INPUT: zup blicket zup kiki zup fep; OUTPUT: (target)

zup blicket zup kiki zup
fep (15) zup blicket zup kiki zup

fep (3)

zup blicket zup kiki zup
fep (1) zup blicket zup kiki zup

fep (1)

INPUT: zup blicket wif kiki dax fep; OUTPUT: (target)

zup blicket wif kiki
dax fep (14) zup blicket wif kiki

dax fep (1)

zup blicket wif kiki
dax fep (1) zup blicket wif kiki

dax fep (1)

zup blicket wif kiki
dax fep (1) zup blicket wif kiki

dax fep (1)

zup blicket wif kiki
dax fep (1)

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v...

3 of 3 10/24/18, 3:28 PM

correct answer

iconic concatenation

Accuracy: 85% (n=20)

“iconic
concatenation”
bias?

85% participants
Correct answer

Representative
mistake

Experiment 1: Results

?

Study instructions Test instructions

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 1

88%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 3

86%

86%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 2

88%

79%

●●●●
●●●●
●●●●
●●●●●●
●●●●●●

Training examples

zup fep kiki lug

wif kiki zup fep

lug kiki wif blicket zup

zup blicket wif kiki dax fep

zup blicket zup kiki zup fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function compositions

85%

65%

70%

75%

85%

Figure 2: Few-shot learning of instructions in Exp. 1. Participants learned to execute instructions in a novel language of pseudowords by
producing sequences of colored circles. Generalization performance is shown next to each test instruction, as the percent correct across
participants. The pseudowords and colors were randomized for each participant; the figure illustrates an example of such an assignment.

presented in random order.
We used several strategies to ensure that our participants

were paying attention. First, before the experiment, partici-
pants practiced using the response interface and had to pass
an instructions quiz; they cycled through the quiz until they
passed it. Second, catch trials were included during the test
phases, probing the study items rather than new items, with
the answers clearly presented on the screen above. There was
one catch trial per stage (except the last stage had two); a par-
ticipants’ test data was excluded if the participant missed two
or more catch trials (n = 5). Finally, test phases were also
excluded if the corresponding study phases were not passed
in the allotted time (13% of remaining data).

Recurrent neural networks. Standard sequence-to-
sequence recurrent neural networks (RNNs; Fig. 1) failed
to generalize from the study set to the test set. RNNs were
trained using supervised learning on the 14 study instructions
and evaluated on the test instructions (Fig. 2), using the
best overall architecture from Lake and Baroni (2018) on
the related SCAN benchmark (2-layer LSTM encoder and
decoder, 200 hidden units per layer, a dropout probability
of 0.5, no attention). This network (Fig. 1) consists of two
neural networks working together: an encoder RNN that
processes the instruction and embeds it as a vector, and a
decoder RNN that decodes this vector as a sequence of output
symbols. Another top architecture from Lake and Baroni
was also evaluated (1-layer LSTM encoder and decoder, 100
hidden units per layer, dropout 0.1, with attention). The
training setup mimicked Lake and Baroni but with 10,000
instruction presentations, corresponding to about 700 passes
through the training data (epochs). Several variants of the
architectures were also trained, repeatedly reducing the
number of hidden units by half until there were only three
hidden units per layer. Averaged across five random seeds,
no architecture generalized better than 2.5% correct on the

test instructions, confirming Lake and Baroni’s conclusion
that seq2seq RNNs struggle with few-shot learning and
systematic generalization.

Results. Human participants showed an impressive ability
to learn functions from limited experience and generalize to
novel inputs, as summarized in Fig. 2. In the first three
stages, performance was measured separately for each func-
tional term after exclusions through the above attention cri-
teria. Average performance across participants was 84.3%
correct (n = 25), counting sequences as correct only if every
output symbol was correct. Measured for individual func-
tions, accuracy was 88.0% (n = 25) for Function 1, 83.3%
(n = 24) for Function 2, and 86.4% (n = 22) for Function 3.1

Participants were also able to compose functions together
to interpret novel sequences of instructions. In the final stage,
accuracy on complex instructions was 76.0% (n = 20). Peo-
ple could generalize to longer and more complex instructions
than previously observed, an ability that seq2seq neural net-
works particularly struggle with (Lake & Baroni, 2018). Dur-
ing the study phase, the most complex instruction consisted
of five input pseudowords requiring two function composi-
tions, producing four output symbols. At test, most partici-
pants could successfully go beyond this, correctly processing
six input pseudowords requiring three function compositions,
producing six output symbols (72.5% correct).

The pattern of errors showcases intriguing alternative hy-
potheses that participants adopted. Some errors were sug-
gestive of inductive biases and assumptions that people bring
to the learning task—principles that are reasonable a priori
and consistent with some but not all of the provided demon-
strations. For instance, many errors can be characterized by
a bias we term “one-to-one,” the assumption that each input

1The number of participants varies since data was included on
the basis of passing the study phase. For comparison, the overall
accuracy with no exclusions at all was 72.0%.

Study instructions Test instructions

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 1

88%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 3

86%

86%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 2

88%

79%

●●●●
●●●●
●●●●
●●●●●●
●●●●●●

Training examples

zup fep kiki lug

wif kiki zup fep

lug kiki wif blicket zup

zup blicket wif kiki dax fep

zup blicket zup kiki zup fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function compositions

85%

65%

70%

75%

85%

Figure 2: Few-shot learning of instructions in Exp. 1. Participants learned to execute instructions in a novel language of pseudowords by
producing sequences of colored circles. Generalization performance is shown next to each test instruction, as the percent correct across
participants. The pseudowords and colors were randomized for each participant; the figure illustrates an example of such an assignment.

presented in random order.
We used several strategies to ensure that our participants

were paying attention. First, before the experiment, partici-
pants practiced using the response interface and had to pass
an instructions quiz; they cycled through the quiz until they
passed it. Second, catch trials were included during the test
phases, probing the study items rather than new items, with
the answers clearly presented on the screen above. There was
one catch trial per stage (except the last stage had two); a par-
ticipants’ test data was excluded if the participant missed two
or more catch trials (n = 5). Finally, test phases were also
excluded if the corresponding study phases were not passed
in the allotted time (13% of remaining data).

Recurrent neural networks. Standard sequence-to-
sequence recurrent neural networks (RNNs; Fig. 1) failed
to generalize from the study set to the test set. RNNs were
trained using supervised learning on the 14 study instructions
and evaluated on the test instructions (Fig. 2), using the
best overall architecture from Lake and Baroni (2018) on
the related SCAN benchmark (2-layer LSTM encoder and
decoder, 200 hidden units per layer, a dropout probability
of 0.5, no attention). This network (Fig. 1) consists of two
neural networks working together: an encoder RNN that
processes the instruction and embeds it as a vector, and a
decoder RNN that decodes this vector as a sequence of output
symbols. Another top architecture from Lake and Baroni
was also evaluated (1-layer LSTM encoder and decoder, 100
hidden units per layer, dropout 0.1, with attention). The
training setup mimicked Lake and Baroni but with 10,000
instruction presentations, corresponding to about 700 passes
through the training data (epochs). Several variants of the
architectures were also trained, repeatedly reducing the
number of hidden units by half until there were only three
hidden units per layer. Averaged across five random seeds,
no architecture generalized better than 2.5% correct on the

test instructions, confirming Lake and Baroni’s conclusion
that seq2seq RNNs struggle with few-shot learning and
systematic generalization.

Results. Human participants showed an impressive ability
to learn functions from limited experience and generalize to
novel inputs, as summarized in Fig. 2. In the first three
stages, performance was measured separately for each func-
tional term after exclusions through the above attention cri-
teria. Average performance across participants was 84.3%
correct (n = 25), counting sequences as correct only if every
output symbol was correct. Measured for individual func-
tions, accuracy was 88.0% (n = 25) for Function 1, 83.3%
(n = 24) for Function 2, and 86.4% (n = 22) for Function 3.1

Participants were also able to compose functions together
to interpret novel sequences of instructions. In the final stage,
accuracy on complex instructions was 76.0% (n = 20). Peo-
ple could generalize to longer and more complex instructions
than previously observed, an ability that seq2seq neural net-
works particularly struggle with (Lake & Baroni, 2018). Dur-
ing the study phase, the most complex instruction consisted
of five input pseudowords requiring two function composi-
tions, producing four output symbols. At test, most partici-
pants could successfully go beyond this, correctly processing
six input pseudowords requiring three function compositions,
producing six output symbols (72.5% correct).

The pattern of errors showcases intriguing alternative hy-
potheses that participants adopted. Some errors were sug-
gestive of inductive biases and assumptions that people bring
to the learning task—principles that are reasonable a priori
and consistent with some but not all of the provided demon-
strations. For instance, many errors can be characterized by
a bias we term “one-to-one,” the assumption that each input

1The number of participants varies since data was included on
the basis of passing the study phase. For comparison, the overall
accuracy with no exclusions at all was 72.0%.

?

Study instructions Test instructions

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 1

88%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 3

86%

86%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 2

88%

79%

●●●●
●●●●
●●●●
●●●●●●
●●●●●●

Training examples

zup fep kiki lug

wif kiki zup fep

lug kiki wif blicket zup

zup blicket wif kiki dax fep

zup blicket zup kiki zup fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function compositions

85%

65%

70%

75%

85%

Figure 2: Few-shot learning of instructions in Exp. 1. Participants learned to execute instructions in a novel language of pseudowords by
producing sequences of colored circles. Generalization performance is shown next to each test instruction, as the percent correct across
participants. The pseudowords and colors were randomized for each participant; the figure illustrates an example of such an assignment.

presented in random order.
We used several strategies to ensure that our participants

were paying attention. First, before the experiment, partici-
pants practiced using the response interface and had to pass
an instructions quiz; they cycled through the quiz until they
passed it. Second, catch trials were included during the test
phases, probing the study items rather than new items, with
the answers clearly presented on the screen above. There was
one catch trial per stage (except the last stage had two); a par-
ticipants’ test data was excluded if the participant missed two
or more catch trials (n = 5). Finally, test phases were also
excluded if the corresponding study phases were not passed
in the allotted time (13% of remaining data).

Recurrent neural networks. Standard sequence-to-
sequence recurrent neural networks (RNNs; Fig. 1) failed
to generalize from the study set to the test set. RNNs were
trained using supervised learning on the 14 study instructions
and evaluated on the test instructions (Fig. 2), using the
best overall architecture from Lake and Baroni (2018) on
the related SCAN benchmark (2-layer LSTM encoder and
decoder, 200 hidden units per layer, a dropout probability
of 0.5, no attention). This network (Fig. 1) consists of two
neural networks working together: an encoder RNN that
processes the instruction and embeds it as a vector, and a
decoder RNN that decodes this vector as a sequence of output
symbols. Another top architecture from Lake and Baroni
was also evaluated (1-layer LSTM encoder and decoder, 100
hidden units per layer, dropout 0.1, with attention). The
training setup mimicked Lake and Baroni but with 10,000
instruction presentations, corresponding to about 700 passes
through the training data (epochs). Several variants of the
architectures were also trained, repeatedly reducing the
number of hidden units by half until there were only three
hidden units per layer. Averaged across five random seeds,
no architecture generalized better than 2.5% correct on the

test instructions, confirming Lake and Baroni’s conclusion
that seq2seq RNNs struggle with few-shot learning and
systematic generalization.

Results. Human participants showed an impressive ability
to learn functions from limited experience and generalize to
novel inputs, as summarized in Fig. 2. In the first three
stages, performance was measured separately for each func-
tional term after exclusions through the above attention cri-
teria. Average performance across participants was 84.3%
correct (n = 25), counting sequences as correct only if every
output symbol was correct. Measured for individual func-
tions, accuracy was 88.0% (n = 25) for Function 1, 83.3%
(n = 24) for Function 2, and 86.4% (n = 22) for Function 3.1

Participants were also able to compose functions together
to interpret novel sequences of instructions. In the final stage,
accuracy on complex instructions was 76.0% (n = 20). Peo-
ple could generalize to longer and more complex instructions
than previously observed, an ability that seq2seq neural net-
works particularly struggle with (Lake & Baroni, 2018). Dur-
ing the study phase, the most complex instruction consisted
of five input pseudowords requiring two function composi-
tions, producing four output symbols. At test, most partici-
pants could successfully go beyond this, correctly processing
six input pseudowords requiring three function compositions,
producing six output symbols (72.5% correct).

The pattern of errors showcases intriguing alternative hy-
potheses that participants adopted. Some errors were sug-
gestive of inductive biases and assumptions that people bring
to the learning task—principles that are reasonable a priori
and consistent with some but not all of the provided demon-
strations. For instance, many errors can be characterized by
a bias we term “one-to-one,” the assumption that each input

1The number of participants varies since data was included on
the basis of passing the study phase. For comparison, the overall
accuracy with no exclusions at all was 72.0%.

Study instructions Test instructions

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 1

88%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 3

86%

86%

●●●
●●●
●●●
●●
●●

Training examples

zup fep

zup blicket lug

dax blicket zup

zup kiki dax

wif kiki zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function 2

88%

79%

●●●●
●●●●
●●●●
●●●●●●
●●●●●●

Training examples

zup fep kiki lug

wif kiki zup fep

lug kiki wif blicket zup

zup blicket wif kiki dax fep

zup blicket zup kiki zup fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/test_patterns.html

1 of 1 12/17/18, 6:06 PM

Function compositions

85%

65%

70%

75%

85%

Figure 2: Few-shot learning of instructions in Exp. 1. Participants learned to execute instructions in a novel language of pseudowords by
producing sequences of colored circles. Generalization performance is shown next to each test instruction, as the percent correct across
participants. The pseudowords and colors were randomized for each participant; the figure illustrates an example of such an assignment.

presented in random order.
We used several strategies to ensure that our participants

were paying attention. First, before the experiment, partici-
pants practiced using the response interface and had to pass
an instructions quiz; they cycled through the quiz until they
passed it. Second, catch trials were included during the test
phases, probing the study items rather than new items, with
the answers clearly presented on the screen above. There was
one catch trial per stage (except the last stage had two); a par-
ticipants’ test data was excluded if the participant missed two
or more catch trials (n = 5). Finally, test phases were also
excluded if the corresponding study phases were not passed
in the allotted time (13% of remaining data).

Recurrent neural networks. Standard sequence-to-
sequence recurrent neural networks (RNNs; Fig. 1) failed
to generalize from the study set to the test set. RNNs were
trained using supervised learning on the 14 study instructions
and evaluated on the test instructions (Fig. 2), using the
best overall architecture from Lake and Baroni (2018) on
the related SCAN benchmark (2-layer LSTM encoder and
decoder, 200 hidden units per layer, a dropout probability
of 0.5, no attention). This network (Fig. 1) consists of two
neural networks working together: an encoder RNN that
processes the instruction and embeds it as a vector, and a
decoder RNN that decodes this vector as a sequence of output
symbols. Another top architecture from Lake and Baroni
was also evaluated (1-layer LSTM encoder and decoder, 100
hidden units per layer, dropout 0.1, with attention). The
training setup mimicked Lake and Baroni but with 10,000
instruction presentations, corresponding to about 700 passes
through the training data (epochs). Several variants of the
architectures were also trained, repeatedly reducing the
number of hidden units by half until there were only three
hidden units per layer. Averaged across five random seeds,
no architecture generalized better than 2.5% correct on the

test instructions, confirming Lake and Baroni’s conclusion
that seq2seq RNNs struggle with few-shot learning and
systematic generalization.

Results. Human participants showed an impressive ability
to learn functions from limited experience and generalize to
novel inputs, as summarized in Fig. 2. In the first three
stages, performance was measured separately for each func-
tional term after exclusions through the above attention cri-
teria. Average performance across participants was 84.3%
correct (n = 25), counting sequences as correct only if every
output symbol was correct. Measured for individual func-
tions, accuracy was 88.0% (n = 25) for Function 1, 83.3%
(n = 24) for Function 2, and 86.4% (n = 22) for Function 3.1

Participants were also able to compose functions together
to interpret novel sequences of instructions. In the final stage,
accuracy on complex instructions was 76.0% (n = 20). Peo-
ple could generalize to longer and more complex instructions
than previously observed, an ability that seq2seq neural net-
works particularly struggle with (Lake & Baroni, 2018). Dur-
ing the study phase, the most complex instruction consisted
of five input pseudowords requiring two function composi-
tions, producing four output symbols. At test, most partici-
pants could successfully go beyond this, correctly processing
six input pseudowords requiring three function compositions,
producing six output symbols (72.5% correct).

The pattern of errors showcases intriguing alternative hy-
potheses that participants adopted. Some errors were sug-
gestive of inductive biases and assumptions that people bring
to the learning task—principles that are reasonable a priori
and consistent with some but not all of the provided demon-
strations. For instance, many errors can be characterized by
a bias we term “one-to-one,” the assumption that each input

1The number of participants varies since data was included on
the basis of passing the study phase. For comparison, the overall
accuracy with no exclusions at all was 72.0%.

Candidate inductive biases

1-to-1:

each input symbol corresponds
to exactly one output symbol

iconic concatenation
(IC): first in first out

dax ● ●

● ●

●● ●●

●●● ●●●

●●● ●●●

●●●● ●●●●

●●●● ●●●●

●●

●● ●●●

●●● ●●

●●●

●●● ●●●

●● ●●

●●●

●●● ●●●

Training examples

dax lug

wif zup

wif fep lug dax fep wif

wif blicket wif kiki lug

dax blicket lug kiki dax

wif blicket fep lug lug fep dax kiki wif

wif fep lug blicket lug kiki dax fep wif

Test examples

INPUT: zup fep dax; OUTPUT: (target)

zup fep dax (16) zup fep dax (4)

zup fep dax (1) zup fep dax (1)

INPUT: zup blicket; OUTPUT: (target)

zup blicket (17) zup blicket (2)

zup blicket (2) zup blicket (1)

INPUT: zup kiki wif; OUTPUT: (target)

zup kiki wif (15) zup kiki wif (3)

file:///Users/Brenden/Library/Containers/com.apple.mail/Data/Libr...

1 of 3 6/18/18, 2:17 PM

zup

● ●

● ●

●● ●●

●●● ●●●

●●● ●●●

●●●● ●●●●

●●●● ●●●●

●●

●● ●●●

●●● ●●

●●●

●●● ●●●

●● ●●

●●●

●●● ●●●

Training examples

dax lug

wif zup

wif fep lug dax fep wif

wif blicket wif kiki lug

dax blicket lug kiki dax

wif blicket fep lug lug fep dax kiki wif

wif fep lug blicket lug kiki dax fep wif

Test examples

INPUT: zup fep dax; OUTPUT: (target)

zup fep dax (16) zup fep dax (4)

zup fep dax (1) zup fep dax (1)

INPUT: zup blicket; OUTPUT: (target)

zup blicket (17) zup blicket (2)

zup blicket (2) zup blicket (1)

INPUT: zup kiki wif; OUTPUT: (target)

zup kiki wif (15) zup kiki wif (3)

file:///Users/Brenden/Library/Containers/com.apple.mail/Data/Libr...

1 of 3 6/18/18, 2:17 PM

dax zup ● ●

● ●

●● ●●

●●● ●●●

●●● ●●●

●●●● ●●●●

●●●● ●●●●

●●

●● ●●●

●●● ●●

●●●

●●● ●●●

●● ●●

●●●

●●● ●●●

Training examples

dax lug

wif zup

wif fep lug dax fep wif

wif blicket wif kiki lug

dax blicket lug kiki dax

wif blicket fep lug lug fep dax kiki wif

wif fep lug blicket lug kiki dax fep wif

Test examples

INPUT: zup fep dax; OUTPUT: (target)

zup fep dax (16) zup fep dax (4)

zup fep dax (1) zup fep dax (1)

INPUT: zup blicket; OUTPUT: (target)

zup blicket (17) zup blicket (2)

zup blicket (2) zup blicket (1)

INPUT: zup kiki wif; OUTPUT: (target)

zup kiki wif (15) zup kiki wif (3)

file:///Users/Brenden/Library/Containers/com.apple.mail/Data/Libr...

1 of 3 6/18/18, 2:17 PM

● ●

● ●

●● ●●

●●● ●●●

●●● ●●●

●●●● ●●●●

●●●● ●●●●

●●

●● ●●●

●●● ●●

●●●

●●● ●●●

●● ●●

●●●

●●● ●●●

Training examples

dax lug

wif zup

wif fep lug dax fep wif

wif blicket wif kiki lug

dax blicket lug kiki dax

wif blicket fep lug lug fep dax kiki wif

wif fep lug blicket lug kiki dax fep wif

Test examples

INPUT: zup fep dax; OUTPUT: (target)

zup fep dax (16) zup fep dax (4)

zup fep dax (1) zup fep dax (1)

INPUT: zup blicket; OUTPUT: (target)

zup blicket (17) zup blicket (2)

zup blicket (2) zup blicket (1)

INPUT: zup kiki wif; OUTPUT: (target)

zup kiki wif (15) zup kiki wif (3)

file:///Users/Brenden/Library/Containers/com.apple.mail/Data/Libr...

1 of 3 6/18/18, 2:17 PM

● ●

● ●

●● ●●

●●● ●●●

●●● ●●●

●●●● ●●●●

●●●● ●●●●

●●

●● ●●●

●●● ●●

●●●

●●● ●●●

●● ●●

●●●

●●● ●●●

Training examples

dax lug

wif zup

wif fep lug dax fep wif

wif blicket wif kiki lug

dax blicket lug kiki dax

wif blicket fep lug lug fep dax kiki wif

wif fep lug blicket lug kiki dax fep wif

Test examples

INPUT: zup fep dax; OUTPUT: (target)

zup fep dax (16) zup fep dax (4)

zup fep dax (1) zup fep dax (1)

INPUT: zup blicket; OUTPUT: (target)

zup blicket (17) zup blicket (2)

zup blicket (2) zup blicket (1)

INPUT: zup kiki wif; OUTPUT: (target)

zup kiki wif (15) zup kiki wif (3)

file:///Users/Brenden/Library/Containers/com.apple.mail/Data/Libr...

1 of 3 6/18/18, 2:17 PM

● ●

● ●

●● ●●

●●● ●●●

●●● ●●●

●●●● ●●●●

●●●● ●●●●

●●

●● ●●●

●●● ●●

●●●

●●● ●●●

●● ●●

●●●

●●● ●●●

Training examples

dax lug

wif zup

wif fep lug dax fep wif

wif blicket wif kiki lug

dax blicket lug kiki dax

wif blicket fep lug lug fep dax kiki wif

wif fep lug blicket lug kiki dax fep wif

Test examples

INPUT: zup fep dax; OUTPUT: (target)

zup fep dax (16) zup fep dax (4)

zup fep dax (1) zup fep dax (1)

INPUT: zup blicket; OUTPUT: (target)

zup blicket (17) zup blicket (2)

zup blicket (2) zup blicket (1)

INPUT: zup kiki wif; OUTPUT: (target)

zup kiki wif (15) zup kiki wif (3)

file:///Users/Brenden/Library/Containers/com.apple.mail/Data/Libr...

1 of 3 6/18/18, 2:17 PM

Test

Trainingdax ● ●

● ●

●● ●●

●●● ●●●

●●● ●●●

●●●● ●●●●

●●●● ●●●●

●●

●● ●●●

●●● ●●

●●●

●●● ●●●

●● ●●

●●●

●●● ●●●

Training examples

dax lug

wif zup

wif fep lug dax fep wif

wif blicket wif kiki lug

dax blicket lug kiki dax

wif blicket fep lug lug fep dax kiki wif

wif fep lug blicket lug kiki dax fep wif

Test examples

INPUT: zup fep dax; OUTPUT: (target)

zup fep dax (16) zup fep dax (4)

zup fep dax (1) zup fep dax (1)

INPUT: zup blicket; OUTPUT: (target)

zup blicket (17) zup blicket (2)

zup blicket (2) zup blicket (1)

INPUT: zup kiki wif; OUTPUT: (target)

zup kiki wif (15) zup kiki wif (3)

file:///Users/Brenden/Library/Containers/com.apple.mail/Data/Libr...

1 of 3 6/18/18, 2:17 PM

zup?

● ●

● ●

●● ●●

●●● ●●●

●●● ●●●

●●●● ●●●●

●●●● ●●●●

●●

●● ●●●

●●● ●●

●●●

●●● ●●●

●● ●●

●●●

●●● ●●●

Training examples

dax lug

wif zup

wif fep lug dax fep wif

wif blicket wif kiki lug

dax blicket lug kiki dax

wif blicket fep lug lug fep dax kiki wif

wif fep lug blicket lug kiki dax fep wif

Test examples

INPUT: zup fep dax; OUTPUT: (target)

zup fep dax (16) zup fep dax (4)

zup fep dax (1) zup fep dax (1)

INPUT: zup blicket; OUTPUT: (target)

zup blicket (17) zup blicket (2)

zup blicket (2) zup blicket (1)

INPUT: zup kiki wif; OUTPUT: (target)

zup kiki wif (15) zup kiki wif (3)

file:///Users/Brenden/Library/Containers/com.apple.mail/Data/Libr...

1 of 3 6/18/18, 2:17 PM

X

● ●

● ●

●● ●●

●●● ●●●

●●● ●●●

●●●● ●●●●

●●●● ●●●●

●●

●● ●●●

●●● ●●

●●●

●●● ●●●

●● ●●

●●●

●●● ●●●

Training examples

dax lug

wif zup

wif fep lug dax fep wif

wif blicket wif kiki lug

dax blicket lug kiki dax

wif blicket fep lug lug fep dax kiki wif

wif fep lug blicket lug kiki dax fep wif

Test examples

INPUT: zup fep dax; OUTPUT: (target)

zup fep dax (16) zup fep dax (4)

zup fep dax (1) zup fep dax (1)

INPUT: zup blicket; OUTPUT: (target)

zup blicket (17) zup blicket (2)

zup blicket (2) zup blicket (1)

INPUT: zup kiki wif; OUTPUT: (target)

zup kiki wif (15) zup kiki wif (3)

file:///Users/Brenden/Library/Containers/com.apple.mail/Data/Libr...

1 of 3 6/18/18, 2:17 PM

● ●

● ●

●● ●●

●●● ●●●

●●● ●●●

●●●● ●●●●

●●●● ●●●●

●●

●● ●●●

●●● ●●

●●●

●●● ●●●

●● ●●

●●●

●●● ●●●

Training examples

dax lug

wif zup

wif fep lug dax fep wif

wif blicket wif kiki lug

dax blicket lug kiki dax

wif blicket fep lug lug fep dax kiki wif

wif fep lug blicket lug kiki dax fep wif

Test examples

INPUT: zup fep dax; OUTPUT: (target)

zup fep dax (16) zup fep dax (4)

zup fep dax (1) zup fep dax (1)

INPUT: zup blicket; OUTPUT: (target)

zup blicket (17) zup blicket (2)

zup blicket (2) zup blicket (1)

INPUT: zup kiki wif; OUTPUT: (target)

zup kiki wif (15) zup kiki wif (3)

file:///Users/Brenden/Library/Containers/com.apple.mail/Data/Libr...

1 of 3 6/18/18, 2:17 PM

● ●

● ●

●● ●●

●●● ●●●

●●● ●●●

●●●● ●●●●

●●●● ●●●●

●●

●● ●●●

●●● ●●

●●●

●●● ●●●

●● ●●

●●●

●●● ●●●

Training examples

dax lug

wif zup

wif fep lug dax fep wif

wif blicket wif kiki lug

dax blicket lug kiki dax

wif blicket fep lug lug fep dax kiki wif

wif fep lug blicket lug kiki dax fep wif

Test examples

INPUT: zup fep dax; OUTPUT: (target)

zup fep dax (16) zup fep dax (4)

zup fep dax (1) zup fep dax (1)

INPUT: zup blicket; OUTPUT: (target)

zup blicket (17) zup blicket (2)

zup blicket (2) zup blicket (1)

INPUT: zup kiki wif; OUTPUT: (target)

zup kiki wif (15) zup kiki wif (3)

file:///Users/Brenden/Library/Containers/com.apple.mail/Data/Libr...

1 of 3 6/18/18, 2:17 PM

● ●

● ●

●● ●●

●●● ●●●

●●● ●●●

●●●● ●●●●

●●●● ●●●●

●●

●● ●●●

●●● ●●

●●●

●●● ●●●

●● ●●

●●●

●●● ●●●

Training examples

dax lug

wif zup

wif fep lug dax fep wif

wif blicket wif kiki lug

dax blicket lug kiki dax

wif blicket fep lug lug fep dax kiki wif

wif fep lug blicket lug kiki dax fep wif

Test examples

INPUT: zup fep dax; OUTPUT: (target)

zup fep dax (16) zup fep dax (4)

zup fep dax (1) zup fep dax (1)

INPUT: zup blicket; OUTPUT: (target)

zup blicket (17) zup blicket (2)

zup blicket (2) zup blicket (1)

INPUT: zup kiki wif; OUTPUT: (target)

zup kiki wif (15) zup kiki wif (3)

file:///Users/Brenden/Library/Containers/com.apple.mail/Data/Libr...

1 of 3 6/18/18, 2:17 PM

pool (6 items)
● ●

● ●

●● ●●

●●● ●●●

●●● ●●●

●●●● ●●●●

●●●● ●●●●

●●

●● ●●●

●● ●●●

●●● ●●●

●●● ●●●●

●●● ●●●

●●● ●●●

●●● ●●●●

●●●●

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (23) yellow after red (8)

yellow after red (3) yellow after red (3)

yellow after red (2) yellow after red (2)

yellow after red (1) yellow after red (1)

yellow after red (1) yellow after red (1)

yellow after red (1) yellow after red (1)

yellow after red (1) yellow after red (1)

yellow after red (1)

file:///Users/Brenden/Library/Containers/com.apple.mail/Data/Libr...

1 of 9 6/25/18, 5:11 PM

…● ●

● ●

●● ●●

●●● ●●●

●●● ●●●

●●●● ●●●●

●●●● ●●●●

●●

●● ●●●

●●● ●●

●●●

●●● ●●●

●● ●●

●●●

●●● ●●●

Training examples

dax lug

wif zup

wif fep lug dax fep wif

wif blicket wif kiki lug

dax blicket lug kiki dax

wif blicket fep lug lug fep dax kiki wif

wif fep lug blicket lug kiki dax fep wif

Test examples

INPUT: zup fep dax; OUTPUT: (target)

zup fep dax (16) zup fep dax (4)

zup fep dax (1) zup fep dax (1)

INPUT: zup blicket; OUTPUT: (target)

zup blicket (17) zup blicket (2)

zup blicket (2) zup blicket (1)

INPUT: zup kiki wif; OUTPUT: (target)

zup kiki wif (15) zup kiki wif (3)

file:///Users/Brenden/Library/Containers/com.apple.mail/Data/Libr...

1 of 3 6/18/18, 2:17 PM

Experiment 2: Examining inductive biases - perform a
seq2seq task with NO training examples!

zup?

zup tufa?

zup wif blicket?

zup zup?

zup wif zup?

dax zup?

blicket wif zup?

● ●●

●● ●●

●●● ●●●

●●●

●● ●●●

●●● ●●●●

●●●● ●●●●●

●●●●

● ●●

●● ●●

Participant 0
one-to-one; iconic concatenation; mutual exclusivity

fep fep fep

zup fep fep wif

fep dax fep kiki dax fep

fep dax kiki

Participant 1
iconic concatenation;

gazzer wif gazzer

gazzer lug gazzer gazzer

gazzer zup dax gazzer zup gazzer

dax zup gazzer

Participant 2
one-to-one;

wif blicket wif

wif wif wif kiki

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-biases-v2/analysis_bias...

1 of 11 10/24/18, 6:23 PM

Results: Free-form responses

Representative of most participants (59%)

Characteristics of the majority response:
• Each word has a unique color
• Mapping is consistent
• Satisfies all three biases

Overall analysis of biases
• 59% showed all three biases
• one-to-one (62%)
• iconic concatenation (79%)
• Of those using iconic concatenation,

mutual exclusivity was 96%

● ●●

●● ●●

●●● ●●●

●●●

●● ●●●

●●● ●●●●

●●●● ●●●●●

●●●●

● ●●

●● ●●

Participant 0
one-to-one; iconic concatenation; mutual exclusivity

fep fep fep

zup fep fep wif

fep dax fep kiki dax fep

fep dax kiki

Participant 1
iconic concatenation;

gazzer wif gazzer

gazzer lug gazzer gazzer

gazzer zup dax gazzer zup gazzer

dax zup gazzer

Participant 2
one-to-one;

wif blicket wif

wif wif wif kiki

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-biases-v2/analysis_bias...

1 of 11 10/24/18, 6:23 PM

Results: Free-form responses

Representative of most participants (59%)

Characteristics of the majority response:
• Each word has a unique color
• Mapping is consistent
• Satisfies all three biases

Overall analysis of biases
• 59% showed all three biases
• one-to-one (62%)
• iconic concatenation (79%)
• Of those using iconic concatenation,

mutual exclusivity was 96%

Experiment 2: Results
Representative response on open-ended task
(59% responded this way, shows 3 inductive biases:
1-to-1; Iconic Concatenation (IC); Mutual Exclusivity (ME))

fep?

fep wif?

fep dax kiki?

fep fep?

fep dax fep?

zup fep?

kiki dax fep?

● ●●

●● ●●

●●● ●●●

●●●

●● ●●●

●●● ●●●●

●●●● ●●●●●

●●●●

● ●●

●● ●●

Participant 0
one-to-one; iconic concatenation; mutual exclusivity

fep fep fep

zup fep fep wif

fep dax fep kiki dax fep

fep dax kiki

Participant 1
iconic concatenation;

gazzer wif gazzer

gazzer lug gazzer gazzer

gazzer zup dax gazzer zup gazzer

dax zup gazzer

Participant 2
one-to-one;

wif blicket wif

wif wif wif kiki

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-biases-v2/analysis_bias...

1 of 11 10/24/18, 6:23 PM

Results: Free-form responses

Representative of most participants (59%)

Characteristics of the majority response:
• Each word has a unique color
• Mapping is consistent
• Satisfies all three biases

Overall analysis of biases
• 59% showed all three biases
• one-to-one (62%)
• iconic concatenation (79%)
• Of those using iconic concatenation,

mutual exclusivity was 96%

● ●●

●● ●●

●●● ●●●

●●●

●● ●●●

●●● ●●●●

●●●● ●●●●●

●●●●

● ●●

●● ●●

Participant 0
one-to-one; iconic concatenation; mutual exclusivity

fep fep fep

zup fep fep wif

fep dax fep kiki dax fep

fep dax kiki

Participant 1
iconic concatenation;

gazzer wif gazzer

gazzer lug gazzer gazzer

gazzer zup dax gazzer zup gazzer

dax zup gazzer

Participant 2
one-to-one;

wif blicket wif

wif wif wif kiki

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-biases-v2/analysis_bias...

1 of 11 10/24/18, 6:23 PM

Results: Free-form responses

Representative of most participants (59%)

Characteristics of the majority response:
• Each word has a unique color
• Mapping is consistent
• Satisfies all three biases

Overall analysis of biases
• 59% showed all three biases
• one-to-one (62%)
• iconic concatenation (79%)
• Of those using iconic concatenation,

mutual exclusivity was 96%

● ●●

●● ●●

●●● ●●●

●●●

●● ●●●

●●● ●●●●

●●●● ●●●●●

●●●●

● ●●

●● ●●

Participant 0
one-to-one; iconic concatenation; mutual exclusivity

fep fep fep

zup fep fep wif

fep dax fep kiki dax fep

fep dax kiki

Participant 1
iconic concatenation;

gazzer wif gazzer

gazzer lug gazzer gazzer

gazzer zup dax gazzer zup gazzer

dax zup gazzer

Participant 2
one-to-one;

wif blicket wif

wif wif wif kiki

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-biases-v2/analysis_bias...

1 of 11 10/24/18, 6:23 PM

Results: Free-form responses

Representative of most participants (59%)

Characteristics of the majority response:
• Each word has a unique color
• Mapping is consistent
• Satisfies all three biases

Overall analysis of biases
• 59% showed all three biases
• one-to-one (62%)
• iconic concatenation (79%)
• Of those using iconic concatenation,

mutual exclusivity was 96%

● ●●

●● ●●

●●● ●●●

●●●

●● ●●●

●●● ●●●●

●●●● ●●●●●

●●●●

● ●●

●● ●●

Participant 0
one-to-one; iconic concatenation; mutual exclusivity

fep fep fep

zup fep fep wif

fep dax fep kiki dax fep

fep dax kiki

Participant 1
iconic concatenation;

gazzer wif gazzer

gazzer lug gazzer gazzer

gazzer zup dax gazzer zup gazzer

dax zup gazzer

Participant 2
one-to-one;

wif blicket wif

wif wif wif kiki

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-biases-v2/analysis_bias...

1 of 11 10/24/18, 6:23 PM

Results: Free-form responses

Representative of most participants (59%)

Characteristics of the majority response:
• Each word has a unique color
• Mapping is consistent
• Satisfies all three biases

Overall analysis of biases
• 59% showed all three biases
• one-to-one (62%)
• iconic concatenation (79%)
• Of those using iconic concatenation,

mutual exclusivity was 96%

● ●●

●● ●●

●●● ●●●

●●●

●● ●●●

●●● ●●●●

●●●● ●●●●●

●●●●

● ●●

●● ●●

Participant 0
one-to-one; iconic concatenation; mutual exclusivity

fep fep fep

zup fep fep wif

fep dax fep kiki dax fep

fep dax kiki

Participant 1
iconic concatenation;

gazzer wif gazzer

gazzer lug gazzer gazzer

gazzer zup dax gazzer zup gazzer

dax zup gazzer

Participant 2
one-to-one;

wif blicket wif

wif wif wif kiki

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-biases-v2/analysis_bias...

1 of 11 10/24/18, 6:23 PM

Results: Free-form responses

Representative of most participants (59%)

Characteristics of the majority response:
• Each word has a unique color
• Mapping is consistent
• Satisfies all three biases

Overall analysis of biases
• 59% showed all three biases
• one-to-one (62%)
• iconic concatenation (79%)
• Of those using iconic concatenation,

mutual exclusivity was 96%

Alternative response 1
(follows IC, ME)

Experiment 2: Results

gazzer?

wif gazzer?

gazzer zup dax?

gazzer lug?

gazzer gazzer?

gazzer zup gazzer?

dax zup gazzer?

6/18/22, 5:42 PM human_beh_freeform.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/human_beh_freeform.html 1/8

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●
●●●
●●●●
●●●●
●●●●●
●●●●

●
●●
●●
●●
●●●
●●●
●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

Participant 0
one-to-one; iconic concatenation; mutual exclusivity

fep

fep fep

zup fep

fep wif

fep dax fep

kiki dax fep

fep dax kiki

Participant 1
 iconic concatenation;

gazzer

wif gazzer

gazzer lug

gazzer gazzer

gazzer zup dax

gazzer zup gazzer

dax zup gazzer

Participant 2

wif

blicket wif

wif wif

wif kiki

wif zup dax

wif zup wif

dax zup wif

Participant 3

kiki

dax kiki

kiki kiki

kiki wif

kiki lug fep

fep lug kiki

6/18/22, 5:42 PM human_beh_freeform.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/human_beh_freeform.html 1/8

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●
●●●
●●●●
●●●●
●●●●●
●●●●

●
●●
●●
●●
●●●
●●●
●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

Participant 0
one-to-one; iconic concatenation; mutual exclusivity

fep

fep fep

zup fep

fep wif

fep dax fep

kiki dax fep

fep dax kiki

Participant 1
 iconic concatenation;

gazzer

wif gazzer

gazzer lug

gazzer gazzer

gazzer zup dax

gazzer zup gazzer

dax zup gazzer

Participant 2

wif

blicket wif

wif wif

wif kiki

wif zup dax

wif zup wif

dax zup wif

Participant 3

kiki

dax kiki

kiki kiki

kiki wif

kiki lug fep

fep lug kiki

6/18/22, 5:42 PM human_beh_freeform.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/human_beh_freeform.html 4/8

●●●
●●●●
●●●●●
●●●●●
●●●●●●

●
●●
●●
●●
●●●
●●●
●●●

●
●●
●●
●●
●●●
●●●
●●●

●
●●
●●
●●
●●●
●●●●
●●●●

blicket wif

blicket blicket

blicket gazzer zup

zup gazzer blicket

blicket gazzer blicket

Participant 12
 one-to-one; iconic concatenation; mutual exclusivity

wif

wif blicket

wif wif

kiki wif

wif gazzer wif

wif gazzer dax

dax gazzer wif

Participant 13
 one-to-one; iconic concatenation; mutual exclusivity

zup

lug zup

zup zup

zup tufa

zup wif zup

fep wif zup

zup wif fep

Participant 14

dax

dax dax

fep dax

dax wif

dax gazzer dax

kiki gazzer dax

dax gazzer kiki

Participant 15
 one-to-one; iconic concatenation; mutual exclusivity

lug

A) Human responses B) BIML responses

6/21/22, 9:25 AM full_BIML_freeform_worksheet.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/full_BIML_freeform_worksheet.html 1/7

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●●
●●●
●●●
●●●●●
●●●●●●
●●●●●

●
●●
●●
●●
●●●
●●●●
●●●●

filename net_beh_worksheet_rep2.tar;
full_BIML_freeform_worksheet
Episode 0

support

dax

dax dax

tufa dax

dax lug

blicket gazzer dax

dax gazzer dax

dax gazzer blicket

query : 100.0% consistent

Episode 1

support

tufa

tufa tufa

tufa zup

lug tufa

tufa dax gazzer

tufa dax tufa

gazzer dax tufa

query : 0.0% consistent

Episode 2

support

tufa

blicket tufa

tufa kiki

tufa tufa

tufa dax tufa

wif dax tufa

tufa dax wif

query : 0.0% consistent

6/21/22, 9:25 AM full_BIML_freeform_worksheet.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/full_BIML_freeform_worksheet.html 1/7

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●●
●●●
●●●
●●●●●
●●●●●●
●●●●●

●
●●
●●
●●
●●●
●●●●
●●●●

filename net_beh_worksheet_rep2.tar;
full_BIML_freeform_worksheet
Episode 0

support

dax

dax dax

tufa dax

dax lug

blicket gazzer dax

dax gazzer dax

dax gazzer blicket

query : 100.0% consistent

Episode 1

support

tufa

tufa tufa

tufa zup

lug tufa

tufa dax gazzer

tufa dax tufa

gazzer dax tufa

query : 0.0% consistent

Episode 2

support

tufa

blicket tufa

tufa kiki

tufa tufa

tufa dax tufa

wif dax tufa

tufa dax wif

query : 0.0% consistent

1-to-1, IC, ME IC, ME 1-to-1, IC, ME IC

6/18/22, 5:42 PM human_beh_freeform.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/human_beh_freeform.html 1/8

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●
●●●
●●●●
●●●●
●●●●●
●●●●

●
●●
●●
●●
●●●
●●●
●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

Participant 0
one-to-one; iconic concatenation; mutual exclusivity

fep

fep fep

zup fep

fep wif

fep dax fep

kiki dax fep

fep dax kiki

Participant 1
 iconic concatenation;

gazzer

wif gazzer

gazzer lug

gazzer gazzer

gazzer zup dax

gazzer zup gazzer

dax zup gazzer

Participant 2

wif

blicket wif

wif wif

wif kiki

wif zup dax

wif zup wif

dax zup wif

Participant 3

kiki

dax kiki

kiki kiki

kiki wif

kiki lug fep

fep lug kiki

6/18/22, 5:42 PM human_beh_freeform.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/human_beh_freeform.html 1/8

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●
●●●
●●●●
●●●●
●●●●●
●●●●

●
●●
●●
●●
●●●
●●●
●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

Participant 0
one-to-one; iconic concatenation; mutual exclusivity

fep

fep fep

zup fep

fep wif

fep dax fep

kiki dax fep

fep dax kiki

Participant 1
 iconic concatenation;

gazzer

wif gazzer

gazzer lug

gazzer gazzer

gazzer zup dax

gazzer zup gazzer

dax zup gazzer

Participant 2

wif

blicket wif

wif wif

wif kiki

wif zup dax

wif zup wif

dax zup wif

Participant 3

kiki

dax kiki

kiki kiki

kiki wif

kiki lug fep

fep lug kiki

6/18/22, 5:42 PM human_beh_freeform.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/human_beh_freeform.html 4/8

●●●
●●●●
●●●●●
●●●●●
●●●●●●

●
●●
●●
●●
●●●
●●●
●●●

●
●●
●●
●●
●●●
●●●
●●●

●
●●
●●
●●
●●●
●●●●
●●●●

blicket wif

blicket blicket

blicket gazzer zup

zup gazzer blicket

blicket gazzer blicket

Participant 12
 one-to-one; iconic concatenation; mutual exclusivity

wif

wif blicket

wif wif

kiki wif

wif gazzer wif

wif gazzer dax

dax gazzer wif

Participant 13
 one-to-one; iconic concatenation; mutual exclusivity

zup

lug zup

zup zup

zup tufa

zup wif zup

fep wif zup

zup wif fep

Participant 14

dax

dax dax

fep dax

dax wif

dax gazzer dax

kiki gazzer dax

dax gazzer kiki

Participant 15
 one-to-one; iconic concatenation; mutual exclusivity

lug

A) Human responses B) BIML responses

6/21/22, 9:25 AM full_BIML_freeform_worksheet.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/full_BIML_freeform_worksheet.html 1/7

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●●
●●●
●●●
●●●●●
●●●●●●
●●●●●

●
●●
●●
●●
●●●
●●●●
●●●●

filename net_beh_worksheet_rep2.tar;
full_BIML_freeform_worksheet
Episode 0

support

dax

dax dax

tufa dax

dax lug

blicket gazzer dax

dax gazzer dax

dax gazzer blicket

query : 100.0% consistent

Episode 1

support

tufa

tufa tufa

tufa zup

lug tufa

tufa dax gazzer

tufa dax tufa

gazzer dax tufa

query : 0.0% consistent

Episode 2

support

tufa

blicket tufa

tufa kiki

tufa tufa

tufa dax tufa

wif dax tufa

tufa dax wif

query : 0.0% consistent

6/21/22, 9:25 AM full_BIML_freeform_worksheet.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/full_BIML_freeform_worksheet.html 1/7

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●●
●●●
●●●
●●●●●
●●●●●●
●●●●●

●
●●
●●
●●
●●●
●●●●
●●●●

filename net_beh_worksheet_rep2.tar;
full_BIML_freeform_worksheet
Episode 0

support

dax

dax dax

tufa dax

dax lug

blicket gazzer dax

dax gazzer dax

dax gazzer blicket

query : 100.0% consistent

Episode 1

support

tufa

tufa tufa

tufa zup

lug tufa

tufa dax gazzer

tufa dax tufa

gazzer dax tufa

query : 0.0% consistent

Episode 2

support

tufa

blicket tufa

tufa kiki

tufa tufa

tufa dax tufa

wif dax tufa

tufa dax wif

query : 0.0% consistent

1-to-1, IC, ME IC, ME 1-to-1, IC, ME IC

6/18/22, 5:42 PM human_beh_freeform.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/human_beh_freeform.html 1/8

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●
●●●
●●●●
●●●●
●●●●●
●●●●

●
●●
●●
●●
●●●
●●●
●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

Participant 0
one-to-one; iconic concatenation; mutual exclusivity

fep

fep fep

zup fep

fep wif

fep dax fep

kiki dax fep

fep dax kiki

Participant 1
 iconic concatenation;

gazzer

wif gazzer

gazzer lug

gazzer gazzer

gazzer zup dax

gazzer zup gazzer

dax zup gazzer

Participant 2

wif

blicket wif

wif wif

wif kiki

wif zup dax

wif zup wif

dax zup wif

Participant 3

kiki

dax kiki

kiki kiki

kiki wif

kiki lug fep

fep lug kiki

6/18/22, 5:42 PM human_beh_freeform.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/human_beh_freeform.html 1/8

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●
●●●
●●●●
●●●●
●●●●●
●●●●

●
●●
●●
●●
●●●
●●●
●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

Participant 0
one-to-one; iconic concatenation; mutual exclusivity

fep

fep fep

zup fep

fep wif

fep dax fep

kiki dax fep

fep dax kiki

Participant 1
 iconic concatenation;

gazzer

wif gazzer

gazzer lug

gazzer gazzer

gazzer zup dax

gazzer zup gazzer

dax zup gazzer

Participant 2

wif

blicket wif

wif wif

wif kiki

wif zup dax

wif zup wif

dax zup wif

Participant 3

kiki

dax kiki

kiki kiki

kiki wif

kiki lug fep

fep lug kiki

6/18/22, 5:42 PM human_beh_freeform.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/human_beh_freeform.html 4/8

●●●
●●●●
●●●●●
●●●●●
●●●●●●

●
●●
●●
●●
●●●
●●●
●●●

●
●●
●●
●●
●●●
●●●
●●●

●
●●
●●
●●
●●●
●●●●
●●●●

blicket wif

blicket blicket

blicket gazzer zup

zup gazzer blicket

blicket gazzer blicket

Participant 12
 one-to-one; iconic concatenation; mutual exclusivity

wif

wif blicket

wif wif

kiki wif

wif gazzer wif

wif gazzer dax

dax gazzer wif

Participant 13
 one-to-one; iconic concatenation; mutual exclusivity

zup

lug zup

zup zup

zup tufa

zup wif zup

fep wif zup

zup wif fep

Participant 14

dax

dax dax

fep dax

dax wif

dax gazzer dax

kiki gazzer dax

dax gazzer kiki

Participant 15
 one-to-one; iconic concatenation; mutual exclusivity

lug

A) Human responses B) BIML responses

6/21/22, 9:25 AM full_BIML_freeform_worksheet.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/full_BIML_freeform_worksheet.html 1/7

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●●
●●●
●●●
●●●●●
●●●●●●
●●●●●

●
●●
●●
●●
●●●
●●●●
●●●●

filename net_beh_worksheet_rep2.tar;
full_BIML_freeform_worksheet
Episode 0

support

dax

dax dax

tufa dax

dax lug

blicket gazzer dax

dax gazzer dax

dax gazzer blicket

query : 100.0% consistent

Episode 1

support

tufa

tufa tufa

tufa zup

lug tufa

tufa dax gazzer

tufa dax tufa

gazzer dax tufa

query : 0.0% consistent

Episode 2

support

tufa

blicket tufa

tufa kiki

tufa tufa

tufa dax tufa

wif dax tufa

tufa dax wif

query : 0.0% consistent

6/21/22, 9:25 AM full_BIML_freeform_worksheet.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/full_BIML_freeform_worksheet.html 1/7

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●●
●●●
●●●
●●●●●
●●●●●●
●●●●●

●
●●
●●
●●
●●●
●●●●
●●●●

filename net_beh_worksheet_rep2.tar;
full_BIML_freeform_worksheet
Episode 0

support

dax

dax dax

tufa dax

dax lug

blicket gazzer dax

dax gazzer dax

dax gazzer blicket

query : 100.0% consistent

Episode 1

support

tufa

tufa tufa

tufa zup

lug tufa

tufa dax gazzer

tufa dax tufa

gazzer dax tufa

query : 0.0% consistent

Episode 2

support

tufa

blicket tufa

tufa kiki

tufa tufa

tufa dax tufa

wif dax tufa

tufa dax wif

query : 0.0% consistent

1-to-1, IC, ME IC, ME 1-to-1, IC, ME IC

6/18/22, 5:42 PM human_beh_freeform.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/human_beh_freeform.html 1/8

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●
●●●
●●●●
●●●●
●●●●●
●●●●

●
●●
●●
●●
●●●
●●●
●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

Participant 0
one-to-one; iconic concatenation; mutual exclusivity

fep

fep fep

zup fep

fep wif

fep dax fep

kiki dax fep

fep dax kiki

Participant 1
 iconic concatenation;

gazzer

wif gazzer

gazzer lug

gazzer gazzer

gazzer zup dax

gazzer zup gazzer

dax zup gazzer

Participant 2

wif

blicket wif

wif wif

wif kiki

wif zup dax

wif zup wif

dax zup wif

Participant 3

kiki

dax kiki

kiki kiki

kiki wif

kiki lug fep

fep lug kiki

6/18/22, 5:42 PM human_beh_freeform.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/human_beh_freeform.html 1/8

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●
●●●
●●●●
●●●●
●●●●●
●●●●

●
●●
●●
●●
●●●
●●●
●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

Participant 0
one-to-one; iconic concatenation; mutual exclusivity

fep

fep fep

zup fep

fep wif

fep dax fep

kiki dax fep

fep dax kiki

Participant 1
 iconic concatenation;

gazzer

wif gazzer

gazzer lug

gazzer gazzer

gazzer zup dax

gazzer zup gazzer

dax zup gazzer

Participant 2

wif

blicket wif

wif wif

wif kiki

wif zup dax

wif zup wif

dax zup wif

Participant 3

kiki

dax kiki

kiki kiki

kiki wif

kiki lug fep

fep lug kiki

6/18/22, 5:42 PM human_beh_freeform.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/human_beh_freeform.html 4/8

●●●
●●●●
●●●●●
●●●●●
●●●●●●

●
●●
●●
●●
●●●
●●●
●●●

●
●●
●●
●●
●●●
●●●
●●●

●
●●
●●
●●
●●●
●●●●
●●●●

blicket wif

blicket blicket

blicket gazzer zup

zup gazzer blicket

blicket gazzer blicket

Participant 12
 one-to-one; iconic concatenation; mutual exclusivity

wif

wif blicket

wif wif

kiki wif

wif gazzer wif

wif gazzer dax

dax gazzer wif

Participant 13
 one-to-one; iconic concatenation; mutual exclusivity

zup

lug zup

zup zup

zup tufa

zup wif zup

fep wif zup

zup wif fep

Participant 14

dax

dax dax

fep dax

dax wif

dax gazzer dax

kiki gazzer dax

dax gazzer kiki

Participant 15
 one-to-one; iconic concatenation; mutual exclusivity

lug

A) Human responses B) BIML responses

6/21/22, 9:25 AM full_BIML_freeform_worksheet.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/full_BIML_freeform_worksheet.html 1/7

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●●
●●●
●●●
●●●●●
●●●●●●
●●●●●

●
●●
●●
●●
●●●
●●●●
●●●●

filename net_beh_worksheet_rep2.tar;
full_BIML_freeform_worksheet
Episode 0

support

dax

dax dax

tufa dax

dax lug

blicket gazzer dax

dax gazzer dax

dax gazzer blicket

query : 100.0% consistent

Episode 1

support

tufa

tufa tufa

tufa zup

lug tufa

tufa dax gazzer

tufa dax tufa

gazzer dax tufa

query : 0.0% consistent

Episode 2

support

tufa

blicket tufa

tufa kiki

tufa tufa

tufa dax tufa

wif dax tufa

tufa dax wif

query : 0.0% consistent

6/21/22, 9:25 AM full_BIML_freeform_worksheet.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/full_BIML_freeform_worksheet.html 1/7

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●●
●●●
●●●
●●●●●
●●●●●●
●●●●●

●
●●
●●
●●
●●●
●●●●
●●●●

filename net_beh_worksheet_rep2.tar;
full_BIML_freeform_worksheet
Episode 0

support

dax

dax dax

tufa dax

dax lug

blicket gazzer dax

dax gazzer dax

dax gazzer blicket

query : 100.0% consistent

Episode 1

support

tufa

tufa tufa

tufa zup

lug tufa

tufa dax gazzer

tufa dax tufa

gazzer dax tufa

query : 0.0% consistent

Episode 2

support

tufa

blicket tufa

tufa kiki

tufa tufa

tufa dax tufa

wif dax tufa

tufa dax wif

query : 0.0% consistent

1-to-1, IC, ME IC, ME 1-to-1, IC, ME IC

6/18/22, 5:42 PM human_beh_freeform.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/human_beh_freeform.html 1/8

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●
●●●
●●●●
●●●●
●●●●●
●●●●

●
●●
●●
●●
●●●
●●●
●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

Participant 0
one-to-one; iconic concatenation; mutual exclusivity

fep

fep fep

zup fep

fep wif

fep dax fep

kiki dax fep

fep dax kiki

Participant 1
 iconic concatenation;

gazzer

wif gazzer

gazzer lug

gazzer gazzer

gazzer zup dax

gazzer zup gazzer

dax zup gazzer

Participant 2

wif

blicket wif

wif wif

wif kiki

wif zup dax

wif zup wif

dax zup wif

Participant 3

kiki

dax kiki

kiki kiki

kiki wif

kiki lug fep

fep lug kiki

6/18/22, 5:42 PM human_beh_freeform.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/human_beh_freeform.html 1/8

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●
●●●
●●●●
●●●●
●●●●●
●●●●

●
●●
●●
●●
●●●
●●●
●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

Participant 0
one-to-one; iconic concatenation; mutual exclusivity

fep

fep fep

zup fep

fep wif

fep dax fep

kiki dax fep

fep dax kiki

Participant 1
 iconic concatenation;

gazzer

wif gazzer

gazzer lug

gazzer gazzer

gazzer zup dax

gazzer zup gazzer

dax zup gazzer

Participant 2

wif

blicket wif

wif wif

wif kiki

wif zup dax

wif zup wif

dax zup wif

Participant 3

kiki

dax kiki

kiki kiki

kiki wif

kiki lug fep

fep lug kiki

6/18/22, 5:42 PM human_beh_freeform.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/human_beh_freeform.html 4/8

●●●
●●●●
●●●●●
●●●●●
●●●●●●

●
●●
●●
●●
●●●
●●●
●●●

●
●●
●●
●●
●●●
●●●
●●●

●
●●
●●
●●
●●●
●●●●
●●●●

blicket wif

blicket blicket

blicket gazzer zup

zup gazzer blicket

blicket gazzer blicket

Participant 12
 one-to-one; iconic concatenation; mutual exclusivity

wif

wif blicket

wif wif

kiki wif

wif gazzer wif

wif gazzer dax

dax gazzer wif

Participant 13
 one-to-one; iconic concatenation; mutual exclusivity

zup

lug zup

zup zup

zup tufa

zup wif zup

fep wif zup

zup wif fep

Participant 14

dax

dax dax

fep dax

dax wif

dax gazzer dax

kiki gazzer dax

dax gazzer kiki

Participant 15
 one-to-one; iconic concatenation; mutual exclusivity

lug

A) Human responses B) BIML responses

6/21/22, 9:25 AM full_BIML_freeform_worksheet.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/full_BIML_freeform_worksheet.html 1/7

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●●
●●●
●●●
●●●●●
●●●●●●
●●●●●

●
●●
●●
●●
●●●
●●●●
●●●●

filename net_beh_worksheet_rep2.tar;
full_BIML_freeform_worksheet
Episode 0

support

dax

dax dax

tufa dax

dax lug

blicket gazzer dax

dax gazzer dax

dax gazzer blicket

query : 100.0% consistent

Episode 1

support

tufa

tufa tufa

tufa zup

lug tufa

tufa dax gazzer

tufa dax tufa

gazzer dax tufa

query : 0.0% consistent

Episode 2

support

tufa

blicket tufa

tufa kiki

tufa tufa

tufa dax tufa

wif dax tufa

tufa dax wif

query : 0.0% consistent

6/21/22, 9:25 AM full_BIML_freeform_worksheet.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/full_BIML_freeform_worksheet.html 1/7

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●●
●●●
●●●
●●●●●
●●●●●●
●●●●●

●
●●
●●
●●
●●●
●●●●
●●●●

filename net_beh_worksheet_rep2.tar;
full_BIML_freeform_worksheet
Episode 0

support

dax

dax dax

tufa dax

dax lug

blicket gazzer dax

dax gazzer dax

dax gazzer blicket

query : 100.0% consistent

Episode 1

support

tufa

tufa tufa

tufa zup

lug tufa

tufa dax gazzer

tufa dax tufa

gazzer dax tufa

query : 0.0% consistent

Episode 2

support

tufa

blicket tufa

tufa kiki

tufa tufa

tufa dax tufa

wif dax tufa

tufa dax wif

query : 0.0% consistent

1-to-1, IC, ME IC, ME 1-to-1, IC, ME IC

6/18/22, 5:42 PM human_beh_freeform.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/human_beh_freeform.html 1/8

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●
●●●
●●●●
●●●●
●●●●●
●●●●

●
●●
●●
●●
●●●
●●●
●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

Participant 0
one-to-one; iconic concatenation; mutual exclusivity

fep

fep fep

zup fep

fep wif

fep dax fep

kiki dax fep

fep dax kiki

Participant 1
 iconic concatenation;

gazzer

wif gazzer

gazzer lug

gazzer gazzer

gazzer zup dax

gazzer zup gazzer

dax zup gazzer

Participant 2

wif

blicket wif

wif wif

wif kiki

wif zup dax

wif zup wif

dax zup wif

Participant 3

kiki

dax kiki

kiki kiki

kiki wif

kiki lug fep

fep lug kiki

6/18/22, 5:42 PM human_beh_freeform.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/human_beh_freeform.html 1/8

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●
●●●
●●●●
●●●●
●●●●●
●●●●

●
●●
●●
●●
●●●
●●●
●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

Participant 0
one-to-one; iconic concatenation; mutual exclusivity

fep

fep fep

zup fep

fep wif

fep dax fep

kiki dax fep

fep dax kiki

Participant 1
 iconic concatenation;

gazzer

wif gazzer

gazzer lug

gazzer gazzer

gazzer zup dax

gazzer zup gazzer

dax zup gazzer

Participant 2

wif

blicket wif

wif wif

wif kiki

wif zup dax

wif zup wif

dax zup wif

Participant 3

kiki

dax kiki

kiki kiki

kiki wif

kiki lug fep

fep lug kiki

6/18/22, 5:42 PM human_beh_freeform.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/human_beh_freeform.html 4/8

●●●
●●●●
●●●●●
●●●●●
●●●●●●

●
●●
●●
●●
●●●
●●●
●●●

●
●●
●●
●●
●●●
●●●
●●●

●
●●
●●
●●
●●●
●●●●
●●●●

blicket wif

blicket blicket

blicket gazzer zup

zup gazzer blicket

blicket gazzer blicket

Participant 12
 one-to-one; iconic concatenation; mutual exclusivity

wif

wif blicket

wif wif

kiki wif

wif gazzer wif

wif gazzer dax

dax gazzer wif

Participant 13
 one-to-one; iconic concatenation; mutual exclusivity

zup

lug zup

zup zup

zup tufa

zup wif zup

fep wif zup

zup wif fep

Participant 14

dax

dax dax

fep dax

dax wif

dax gazzer dax

kiki gazzer dax

dax gazzer kiki

Participant 15
 one-to-one; iconic concatenation; mutual exclusivity

lug

A) Human responses B) BIML responses

6/21/22, 9:25 AM full_BIML_freeform_worksheet.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/full_BIML_freeform_worksheet.html 1/7

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●●
●●●
●●●
●●●●●
●●●●●●
●●●●●

●
●●
●●
●●
●●●
●●●●
●●●●

filename net_beh_worksheet_rep2.tar;
full_BIML_freeform_worksheet
Episode 0

support

dax

dax dax

tufa dax

dax lug

blicket gazzer dax

dax gazzer dax

dax gazzer blicket

query : 100.0% consistent

Episode 1

support

tufa

tufa tufa

tufa zup

lug tufa

tufa dax gazzer

tufa dax tufa

gazzer dax tufa

query : 0.0% consistent

Episode 2

support

tufa

blicket tufa

tufa kiki

tufa tufa

tufa dax tufa

wif dax tufa

tufa dax wif

query : 0.0% consistent

6/21/22, 9:25 AM full_BIML_freeform_worksheet.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/full_BIML_freeform_worksheet.html 1/7

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●●
●●●
●●●
●●●●●
●●●●●●
●●●●●

●
●●
●●
●●
●●●
●●●●
●●●●

filename net_beh_worksheet_rep2.tar;
full_BIML_freeform_worksheet
Episode 0

support

dax

dax dax

tufa dax

dax lug

blicket gazzer dax

dax gazzer dax

dax gazzer blicket

query : 100.0% consistent

Episode 1

support

tufa

tufa tufa

tufa zup

lug tufa

tufa dax gazzer

tufa dax tufa

gazzer dax tufa

query : 0.0% consistent

Episode 2

support

tufa

blicket tufa

tufa kiki

tufa tufa

tufa dax tufa

wif dax tufa

tufa dax wif

query : 0.0% consistent

1-to-1, IC, ME IC, ME 1-to-1, IC, ME IC

6/18/22, 5:42 PM human_beh_freeform.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/human_beh_freeform.html 1/8

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●
●●●
●●●●
●●●●
●●●●●
●●●●

●
●●
●●
●●
●●●
●●●
●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

Participant 0
one-to-one; iconic concatenation; mutual exclusivity

fep

fep fep

zup fep

fep wif

fep dax fep

kiki dax fep

fep dax kiki

Participant 1
 iconic concatenation;

gazzer

wif gazzer

gazzer lug

gazzer gazzer

gazzer zup dax

gazzer zup gazzer

dax zup gazzer

Participant 2

wif

blicket wif

wif wif

wif kiki

wif zup dax

wif zup wif

dax zup wif

Participant 3

kiki

dax kiki

kiki kiki

kiki wif

kiki lug fep

fep lug kiki

6/18/22, 5:42 PM human_beh_freeform.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/human_beh_freeform.html 1/8

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●
●●●
●●●●
●●●●
●●●●●
●●●●

●
●●
●●
●●
●●●
●●●
●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

Participant 0
one-to-one; iconic concatenation; mutual exclusivity

fep

fep fep

zup fep

fep wif

fep dax fep

kiki dax fep

fep dax kiki

Participant 1
 iconic concatenation;

gazzer

wif gazzer

gazzer lug

gazzer gazzer

gazzer zup dax

gazzer zup gazzer

dax zup gazzer

Participant 2

wif

blicket wif

wif wif

wif kiki

wif zup dax

wif zup wif

dax zup wif

Participant 3

kiki

dax kiki

kiki kiki

kiki wif

kiki lug fep

fep lug kiki

6/18/22, 5:42 PM human_beh_freeform.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/human_beh_freeform.html 4/8

●●●
●●●●
●●●●●
●●●●●
●●●●●●

●
●●
●●
●●
●●●
●●●
●●●

●
●●
●●
●●
●●●
●●●
●●●

●
●●
●●
●●
●●●
●●●●
●●●●

blicket wif

blicket blicket

blicket gazzer zup

zup gazzer blicket

blicket gazzer blicket

Participant 12
 one-to-one; iconic concatenation; mutual exclusivity

wif

wif blicket

wif wif

kiki wif

wif gazzer wif

wif gazzer dax

dax gazzer wif

Participant 13
 one-to-one; iconic concatenation; mutual exclusivity

zup

lug zup

zup zup

zup tufa

zup wif zup

fep wif zup

zup wif fep

Participant 14

dax

dax dax

fep dax

dax wif

dax gazzer dax

kiki gazzer dax

dax gazzer kiki

Participant 15
 one-to-one; iconic concatenation; mutual exclusivity

lug

A) Human responses B) BIML responses

6/21/22, 9:25 AM full_BIML_freeform_worksheet.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/full_BIML_freeform_worksheet.html 1/7

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●●
●●●
●●●
●●●●●
●●●●●●
●●●●●

●
●●
●●
●●
●●●
●●●●
●●●●

filename net_beh_worksheet_rep2.tar;
full_BIML_freeform_worksheet
Episode 0

support

dax

dax dax

tufa dax

dax lug

blicket gazzer dax

dax gazzer dax

dax gazzer blicket

query : 100.0% consistent

Episode 1

support

tufa

tufa tufa

tufa zup

lug tufa

tufa dax gazzer

tufa dax tufa

gazzer dax tufa

query : 0.0% consistent

Episode 2

support

tufa

blicket tufa

tufa kiki

tufa tufa

tufa dax tufa

wif dax tufa

tufa dax wif

query : 0.0% consistent

6/21/22, 9:25 AM full_BIML_freeform_worksheet.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/full_BIML_freeform_worksheet.html 1/7

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●●
●●●
●●●
●●●●●
●●●●●●
●●●●●

●
●●
●●
●●
●●●
●●●●
●●●●

filename net_beh_worksheet_rep2.tar;
full_BIML_freeform_worksheet
Episode 0

support

dax

dax dax

tufa dax

dax lug

blicket gazzer dax

dax gazzer dax

dax gazzer blicket

query : 100.0% consistent

Episode 1

support

tufa

tufa tufa

tufa zup

lug tufa

tufa dax gazzer

tufa dax tufa

gazzer dax tufa

query : 0.0% consistent

Episode 2

support

tufa

blicket tufa

tufa kiki

tufa tufa

tufa dax tufa

wif dax tufa

tufa dax wif

query : 0.0% consistent

1-to-1, IC, ME IC, ME 1-to-1, IC, ME IC

dax?

fep dax?

dax gazzer dax?

dax wif?

dax dax?

kiki gazzer dax?

dax gazzer kiki?

6/18/22, 5:42 PM human_beh_freeform.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/human_beh_freeform.html 1/8

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●
●●●
●●●●
●●●●
●●●●●
●●●●

●
●●
●●
●●
●●●
●●●
●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

Participant 0
one-to-one; iconic concatenation; mutual exclusivity

fep

fep fep

zup fep

fep wif

fep dax fep

kiki dax fep

fep dax kiki

Participant 1
 iconic concatenation;

gazzer

wif gazzer

gazzer lug

gazzer gazzer

gazzer zup dax

gazzer zup gazzer

dax zup gazzer

Participant 2

wif

blicket wif

wif wif

wif kiki

wif zup dax

wif zup wif

dax zup wif

Participant 3

kiki

dax kiki

kiki kiki

kiki wif

kiki lug fep

fep lug kiki

6/18/22, 5:42 PM human_beh_freeform.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/human_beh_freeform.html 1/8

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●
●●●
●●●●
●●●●
●●●●●
●●●●

●
●●
●●
●●
●●●
●●●
●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

Participant 0
one-to-one; iconic concatenation; mutual exclusivity

fep

fep fep

zup fep

fep wif

fep dax fep

kiki dax fep

fep dax kiki

Participant 1
 iconic concatenation;

gazzer

wif gazzer

gazzer lug

gazzer gazzer

gazzer zup dax

gazzer zup gazzer

dax zup gazzer

Participant 2

wif

blicket wif

wif wif

wif kiki

wif zup dax

wif zup wif

dax zup wif

Participant 3

kiki

dax kiki

kiki kiki

kiki wif

kiki lug fep

fep lug kiki

6/18/22, 5:42 PM human_beh_freeform.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/human_beh_freeform.html 4/8

●●●
●●●●
●●●●●
●●●●●
●●●●●●

●
●●
●●
●●
●●●
●●●
●●●

●
●●
●●
●●
●●●
●●●
●●●

●
●●
●●
●●
●●●
●●●●
●●●●

blicket wif

blicket blicket

blicket gazzer zup

zup gazzer blicket

blicket gazzer blicket

Participant 12
 one-to-one; iconic concatenation; mutual exclusivity

wif

wif blicket

wif wif

kiki wif

wif gazzer wif

wif gazzer dax

dax gazzer wif

Participant 13
 one-to-one; iconic concatenation; mutual exclusivity

zup

lug zup

zup zup

zup tufa

zup wif zup

fep wif zup

zup wif fep

Participant 14

dax

dax dax

fep dax

dax wif

dax gazzer dax

kiki gazzer dax

dax gazzer kiki

Participant 15
 one-to-one; iconic concatenation; mutual exclusivity

lug

A) Human responses B) BIML responses

6/21/22, 9:25 AM full_BIML_freeform_worksheet.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/full_BIML_freeform_worksheet.html 1/7

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●●
●●●
●●●
●●●●●
●●●●●●
●●●●●

●
●●
●●
●●
●●●
●●●●
●●●●

filename net_beh_worksheet_rep2.tar;
full_BIML_freeform_worksheet
Episode 0

support

dax

dax dax

tufa dax

dax lug

blicket gazzer dax

dax gazzer dax

dax gazzer blicket

query : 100.0% consistent

Episode 1

support

tufa

tufa tufa

tufa zup

lug tufa

tufa dax gazzer

tufa dax tufa

gazzer dax tufa

query : 0.0% consistent

Episode 2

support

tufa

blicket tufa

tufa kiki

tufa tufa

tufa dax tufa

wif dax tufa

tufa dax wif

query : 0.0% consistent

6/21/22, 9:25 AM full_BIML_freeform_worksheet.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/full_BIML_freeform_worksheet.html 1/7

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●●
●●●
●●●
●●●●●
●●●●●●
●●●●●

●
●●
●●
●●
●●●
●●●●
●●●●

filename net_beh_worksheet_rep2.tar;
full_BIML_freeform_worksheet
Episode 0

support

dax

dax dax

tufa dax

dax lug

blicket gazzer dax

dax gazzer dax

dax gazzer blicket

query : 100.0% consistent

Episode 1

support

tufa

tufa tufa

tufa zup

lug tufa

tufa dax gazzer

tufa dax tufa

gazzer dax tufa

query : 0.0% consistent

Episode 2

support

tufa

blicket tufa

tufa kiki

tufa tufa

tufa dax tufa

wif dax tufa

tufa dax wif

query : 0.0% consistent

1-to-1, IC, ME IC, ME 1-to-1, IC, ME IC

6/18/22, 5:42 PM human_beh_freeform.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/human_beh_freeform.html 1/8

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●
●●●
●●●●
●●●●
●●●●●
●●●●

●
●●
●●
●●
●●●
●●●
●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

Participant 0
one-to-one; iconic concatenation; mutual exclusivity

fep

fep fep

zup fep

fep wif

fep dax fep

kiki dax fep

fep dax kiki

Participant 1
 iconic concatenation;

gazzer

wif gazzer

gazzer lug

gazzer gazzer

gazzer zup dax

gazzer zup gazzer

dax zup gazzer

Participant 2

wif

blicket wif

wif wif

wif kiki

wif zup dax

wif zup wif

dax zup wif

Participant 3

kiki

dax kiki

kiki kiki

kiki wif

kiki lug fep

fep lug kiki

6/18/22, 5:42 PM human_beh_freeform.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/human_beh_freeform.html 1/8

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●
●●●
●●●●
●●●●
●●●●●
●●●●

●
●●
●●
●●
●●●
●●●
●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

Participant 0
one-to-one; iconic concatenation; mutual exclusivity

fep

fep fep

zup fep

fep wif

fep dax fep

kiki dax fep

fep dax kiki

Participant 1
 iconic concatenation;

gazzer

wif gazzer

gazzer lug

gazzer gazzer

gazzer zup dax

gazzer zup gazzer

dax zup gazzer

Participant 2

wif

blicket wif

wif wif

wif kiki

wif zup dax

wif zup wif

dax zup wif

Participant 3

kiki

dax kiki

kiki kiki

kiki wif

kiki lug fep

fep lug kiki

6/18/22, 5:42 PM human_beh_freeform.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/human_beh_freeform.html 4/8

●●●
●●●●
●●●●●
●●●●●
●●●●●●

●
●●
●●
●●
●●●
●●●
●●●

●
●●
●●
●●
●●●
●●●
●●●

●
●●
●●
●●
●●●
●●●●
●●●●

blicket wif

blicket blicket

blicket gazzer zup

zup gazzer blicket

blicket gazzer blicket

Participant 12
 one-to-one; iconic concatenation; mutual exclusivity

wif

wif blicket

wif wif

kiki wif

wif gazzer wif

wif gazzer dax

dax gazzer wif

Participant 13
 one-to-one; iconic concatenation; mutual exclusivity

zup

lug zup

zup zup

zup tufa

zup wif zup

fep wif zup

zup wif fep

Participant 14

dax

dax dax

fep dax

dax wif

dax gazzer dax

kiki gazzer dax

dax gazzer kiki

Participant 15
 one-to-one; iconic concatenation; mutual exclusivity

lug

A) Human responses B) BIML responses

6/21/22, 9:25 AM full_BIML_freeform_worksheet.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/full_BIML_freeform_worksheet.html 1/7

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●●
●●●
●●●
●●●●●
●●●●●●
●●●●●

●
●●
●●
●●
●●●
●●●●
●●●●

filename net_beh_worksheet_rep2.tar;
full_BIML_freeform_worksheet
Episode 0

support

dax

dax dax

tufa dax

dax lug

blicket gazzer dax

dax gazzer dax

dax gazzer blicket

query : 100.0% consistent

Episode 1

support

tufa

tufa tufa

tufa zup

lug tufa

tufa dax gazzer

tufa dax tufa

gazzer dax tufa

query : 0.0% consistent

Episode 2

support

tufa

blicket tufa

tufa kiki

tufa tufa

tufa dax tufa

wif dax tufa

tufa dax wif

query : 0.0% consistent

6/21/22, 9:25 AM full_BIML_freeform_worksheet.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/full_BIML_freeform_worksheet.html 1/7

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●●
●●●
●●●
●●●●●
●●●●●●
●●●●●

●
●●
●●
●●
●●●
●●●●
●●●●

filename net_beh_worksheet_rep2.tar;
full_BIML_freeform_worksheet
Episode 0

support

dax

dax dax

tufa dax

dax lug

blicket gazzer dax

dax gazzer dax

dax gazzer blicket

query : 100.0% consistent

Episode 1

support

tufa

tufa tufa

tufa zup

lug tufa

tufa dax gazzer

tufa dax tufa

gazzer dax tufa

query : 0.0% consistent

Episode 2

support

tufa

blicket tufa

tufa kiki

tufa tufa

tufa dax tufa

wif dax tufa

tufa dax wif

query : 0.0% consistent

1-to-1, IC, ME IC, ME 1-to-1, IC, ME IC

6/18/22, 5:42 PM human_beh_freeform.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/human_beh_freeform.html 1/8

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●
●●●
●●●●
●●●●
●●●●●
●●●●

●
●●
●●
●●
●●●
●●●
●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

Participant 0
one-to-one; iconic concatenation; mutual exclusivity

fep

fep fep

zup fep

fep wif

fep dax fep

kiki dax fep

fep dax kiki

Participant 1
 iconic concatenation;

gazzer

wif gazzer

gazzer lug

gazzer gazzer

gazzer zup dax

gazzer zup gazzer

dax zup gazzer

Participant 2

wif

blicket wif

wif wif

wif kiki

wif zup dax

wif zup wif

dax zup wif

Participant 3

kiki

dax kiki

kiki kiki

kiki wif

kiki lug fep

fep lug kiki

6/18/22, 5:42 PM human_beh_freeform.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/human_beh_freeform.html 1/8

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●
●●●
●●●●
●●●●
●●●●●
●●●●

●
●●
●●
●●
●●●
●●●
●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

Participant 0
one-to-one; iconic concatenation; mutual exclusivity

fep

fep fep

zup fep

fep wif

fep dax fep

kiki dax fep

fep dax kiki

Participant 1
 iconic concatenation;

gazzer

wif gazzer

gazzer lug

gazzer gazzer

gazzer zup dax

gazzer zup gazzer

dax zup gazzer

Participant 2

wif

blicket wif

wif wif

wif kiki

wif zup dax

wif zup wif

dax zup wif

Participant 3

kiki

dax kiki

kiki kiki

kiki wif

kiki lug fep

fep lug kiki

6/18/22, 5:42 PM human_beh_freeform.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/human_beh_freeform.html 4/8

●●●
●●●●
●●●●●
●●●●●
●●●●●●

●
●●
●●
●●
●●●
●●●
●●●

●
●●
●●
●●
●●●
●●●
●●●

●
●●
●●
●●
●●●
●●●●
●●●●

blicket wif

blicket blicket

blicket gazzer zup

zup gazzer blicket

blicket gazzer blicket

Participant 12
 one-to-one; iconic concatenation; mutual exclusivity

wif

wif blicket

wif wif

kiki wif

wif gazzer wif

wif gazzer dax

dax gazzer wif

Participant 13
 one-to-one; iconic concatenation; mutual exclusivity

zup

lug zup

zup zup

zup tufa

zup wif zup

fep wif zup

zup wif fep

Participant 14

dax

dax dax

fep dax

dax wif

dax gazzer dax

kiki gazzer dax

dax gazzer kiki

Participant 15
 one-to-one; iconic concatenation; mutual exclusivity

lug

A) Human responses B) BIML responses

6/21/22, 9:25 AM full_BIML_freeform_worksheet.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/full_BIML_freeform_worksheet.html 1/7

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●●
●●●
●●●
●●●●●
●●●●●●
●●●●●

●
●●
●●
●●
●●●
●●●●
●●●●

filename net_beh_worksheet_rep2.tar;
full_BIML_freeform_worksheet
Episode 0

support

dax

dax dax

tufa dax

dax lug

blicket gazzer dax

dax gazzer dax

dax gazzer blicket

query : 100.0% consistent

Episode 1

support

tufa

tufa tufa

tufa zup

lug tufa

tufa dax gazzer

tufa dax tufa

gazzer dax tufa

query : 0.0% consistent

Episode 2

support

tufa

blicket tufa

tufa kiki

tufa tufa

tufa dax tufa

wif dax tufa

tufa dax wif

query : 0.0% consistent

6/21/22, 9:25 AM full_BIML_freeform_worksheet.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/full_BIML_freeform_worksheet.html 1/7

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●●
●●●
●●●
●●●●●
●●●●●●
●●●●●

●
●●
●●
●●
●●●
●●●●
●●●●

filename net_beh_worksheet_rep2.tar;
full_BIML_freeform_worksheet
Episode 0

support

dax

dax dax

tufa dax

dax lug

blicket gazzer dax

dax gazzer dax

dax gazzer blicket

query : 100.0% consistent

Episode 1

support

tufa

tufa tufa

tufa zup

lug tufa

tufa dax gazzer

tufa dax tufa

gazzer dax tufa

query : 0.0% consistent

Episode 2

support

tufa

blicket tufa

tufa kiki

tufa tufa

tufa dax tufa

wif dax tufa

tufa dax wif

query : 0.0% consistent

1-to-1, IC, ME IC, ME 1-to-1, IC, ME IC

6/18/22, 5:42 PM human_beh_freeform.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/human_beh_freeform.html 1/8

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●
●●●
●●●●
●●●●
●●●●●
●●●●

●
●●
●●
●●
●●●
●●●
●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

Participant 0
one-to-one; iconic concatenation; mutual exclusivity

fep

fep fep

zup fep

fep wif

fep dax fep

kiki dax fep

fep dax kiki

Participant 1
 iconic concatenation;

gazzer

wif gazzer

gazzer lug

gazzer gazzer

gazzer zup dax

gazzer zup gazzer

dax zup gazzer

Participant 2

wif

blicket wif

wif wif

wif kiki

wif zup dax

wif zup wif

dax zup wif

Participant 3

kiki

dax kiki

kiki kiki

kiki wif

kiki lug fep

fep lug kiki

6/18/22, 5:42 PM human_beh_freeform.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/human_beh_freeform.html 1/8

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●
●●●
●●●●
●●●●
●●●●●
●●●●

●
●●
●●
●●
●●●
●●●
●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

Participant 0
one-to-one; iconic concatenation; mutual exclusivity

fep

fep fep

zup fep

fep wif

fep dax fep

kiki dax fep

fep dax kiki

Participant 1
 iconic concatenation;

gazzer

wif gazzer

gazzer lug

gazzer gazzer

gazzer zup dax

gazzer zup gazzer

dax zup gazzer

Participant 2

wif

blicket wif

wif wif

wif kiki

wif zup dax

wif zup wif

dax zup wif

Participant 3

kiki

dax kiki

kiki kiki

kiki wif

kiki lug fep

fep lug kiki

6/18/22, 5:42 PM human_beh_freeform.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/human_beh_freeform.html 4/8

●●●
●●●●
●●●●●
●●●●●
●●●●●●

●
●●
●●
●●
●●●
●●●
●●●

●
●●
●●
●●
●●●
●●●
●●●

●
●●
●●
●●
●●●
●●●●
●●●●

blicket wif

blicket blicket

blicket gazzer zup

zup gazzer blicket

blicket gazzer blicket

Participant 12
 one-to-one; iconic concatenation; mutual exclusivity

wif

wif blicket

wif wif

kiki wif

wif gazzer wif

wif gazzer dax

dax gazzer wif

Participant 13
 one-to-one; iconic concatenation; mutual exclusivity

zup

lug zup

zup zup

zup tufa

zup wif zup

fep wif zup

zup wif fep

Participant 14

dax

dax dax

fep dax

dax wif

dax gazzer dax

kiki gazzer dax

dax gazzer kiki

Participant 15
 one-to-one; iconic concatenation; mutual exclusivity

lug

A) Human responses B) BIML responses

6/21/22, 9:25 AM full_BIML_freeform_worksheet.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/full_BIML_freeform_worksheet.html 1/7

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●●
●●●
●●●
●●●●●
●●●●●●
●●●●●

●
●●
●●
●●
●●●
●●●●
●●●●

filename net_beh_worksheet_rep2.tar;
full_BIML_freeform_worksheet
Episode 0

support

dax

dax dax

tufa dax

dax lug

blicket gazzer dax

dax gazzer dax

dax gazzer blicket

query : 100.0% consistent

Episode 1

support

tufa

tufa tufa

tufa zup

lug tufa

tufa dax gazzer

tufa dax tufa

gazzer dax tufa

query : 0.0% consistent

Episode 2

support

tufa

blicket tufa

tufa kiki

tufa tufa

tufa dax tufa

wif dax tufa

tufa dax wif

query : 0.0% consistent

6/21/22, 9:25 AM full_BIML_freeform_worksheet.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/full_BIML_freeform_worksheet.html 1/7

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●●
●●●
●●●
●●●●●
●●●●●●
●●●●●

●
●●
●●
●●
●●●
●●●●
●●●●

filename net_beh_worksheet_rep2.tar;
full_BIML_freeform_worksheet
Episode 0

support

dax

dax dax

tufa dax

dax lug

blicket gazzer dax

dax gazzer dax

dax gazzer blicket

query : 100.0% consistent

Episode 1

support

tufa

tufa tufa

tufa zup

lug tufa

tufa dax gazzer

tufa dax tufa

gazzer dax tufa

query : 0.0% consistent

Episode 2

support

tufa

blicket tufa

tufa kiki

tufa tufa

tufa dax tufa

wif dax tufa

tufa dax wif

query : 0.0% consistent

1-to-1, IC, ME IC, ME 1-to-1, IC, ME IC

6/18/22, 5:42 PM human_beh_freeform.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/human_beh_freeform.html 1/8

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●
●●●
●●●●
●●●●
●●●●●
●●●●

●
●●
●●
●●
●●●
●●●
●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

Participant 0
one-to-one; iconic concatenation; mutual exclusivity

fep

fep fep

zup fep

fep wif

fep dax fep

kiki dax fep

fep dax kiki

Participant 1
 iconic concatenation;

gazzer

wif gazzer

gazzer lug

gazzer gazzer

gazzer zup dax

gazzer zup gazzer

dax zup gazzer

Participant 2

wif

blicket wif

wif wif

wif kiki

wif zup dax

wif zup wif

dax zup wif

Participant 3

kiki

dax kiki

kiki kiki

kiki wif

kiki lug fep

fep lug kiki

6/18/22, 5:42 PM human_beh_freeform.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/human_beh_freeform.html 1/8

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●
●●●
●●●●
●●●●
●●●●●
●●●●

●
●●
●●
●●
●●●
●●●
●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

Participant 0
one-to-one; iconic concatenation; mutual exclusivity

fep

fep fep

zup fep

fep wif

fep dax fep

kiki dax fep

fep dax kiki

Participant 1
 iconic concatenation;

gazzer

wif gazzer

gazzer lug

gazzer gazzer

gazzer zup dax

gazzer zup gazzer

dax zup gazzer

Participant 2

wif

blicket wif

wif wif

wif kiki

wif zup dax

wif zup wif

dax zup wif

Participant 3

kiki

dax kiki

kiki kiki

kiki wif

kiki lug fep

fep lug kiki

6/18/22, 5:42 PM human_beh_freeform.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/human_beh_freeform.html 4/8

●●●
●●●●
●●●●●
●●●●●
●●●●●●

●
●●
●●
●●
●●●
●●●
●●●

●
●●
●●
●●
●●●
●●●
●●●

●
●●
●●
●●
●●●
●●●●
●●●●

blicket wif

blicket blicket

blicket gazzer zup

zup gazzer blicket

blicket gazzer blicket

Participant 12
 one-to-one; iconic concatenation; mutual exclusivity

wif

wif blicket

wif wif

kiki wif

wif gazzer wif

wif gazzer dax

dax gazzer wif

Participant 13
 one-to-one; iconic concatenation; mutual exclusivity

zup

lug zup

zup zup

zup tufa

zup wif zup

fep wif zup

zup wif fep

Participant 14

dax

dax dax

fep dax

dax wif

dax gazzer dax

kiki gazzer dax

dax gazzer kiki

Participant 15
 one-to-one; iconic concatenation; mutual exclusivity

lug

A) Human responses B) BIML responses

6/21/22, 9:25 AM full_BIML_freeform_worksheet.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/full_BIML_freeform_worksheet.html 1/7

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●●
●●●
●●●
●●●●●
●●●●●●
●●●●●

●
●●
●●
●●
●●●
●●●●
●●●●

filename net_beh_worksheet_rep2.tar;
full_BIML_freeform_worksheet
Episode 0

support

dax

dax dax

tufa dax

dax lug

blicket gazzer dax

dax gazzer dax

dax gazzer blicket

query : 100.0% consistent

Episode 1

support

tufa

tufa tufa

tufa zup

lug tufa

tufa dax gazzer

tufa dax tufa

gazzer dax tufa

query : 0.0% consistent

Episode 2

support

tufa

blicket tufa

tufa kiki

tufa tufa

tufa dax tufa

wif dax tufa

tufa dax wif

query : 0.0% consistent

6/21/22, 9:25 AM full_BIML_freeform_worksheet.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/full_BIML_freeform_worksheet.html 1/7

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●●
●●●
●●●
●●●●●
●●●●●●
●●●●●

●
●●
●●
●●
●●●
●●●●
●●●●

filename net_beh_worksheet_rep2.tar;
full_BIML_freeform_worksheet
Episode 0

support

dax

dax dax

tufa dax

dax lug

blicket gazzer dax

dax gazzer dax

dax gazzer blicket

query : 100.0% consistent

Episode 1

support

tufa

tufa tufa

tufa zup

lug tufa

tufa dax gazzer

tufa dax tufa

gazzer dax tufa

query : 0.0% consistent

Episode 2

support

tufa

blicket tufa

tufa kiki

tufa tufa

tufa dax tufa

wif dax tufa

tufa dax wif

query : 0.0% consistent

1-to-1, IC, ME IC, ME 1-to-1, IC, ME IC

6/18/22, 5:42 PM human_beh_freeform.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/human_beh_freeform.html 1/8

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●
●●●
●●●●
●●●●
●●●●●
●●●●

●
●●
●●
●●
●●●
●●●
●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

Participant 0
one-to-one; iconic concatenation; mutual exclusivity

fep

fep fep

zup fep

fep wif

fep dax fep

kiki dax fep

fep dax kiki

Participant 1
 iconic concatenation;

gazzer

wif gazzer

gazzer lug

gazzer gazzer

gazzer zup dax

gazzer zup gazzer

dax zup gazzer

Participant 2

wif

blicket wif

wif wif

wif kiki

wif zup dax

wif zup wif

dax zup wif

Participant 3

kiki

dax kiki

kiki kiki

kiki wif

kiki lug fep

fep lug kiki

6/18/22, 5:42 PM human_beh_freeform.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/human_beh_freeform.html 1/8

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●
●●●
●●●●
●●●●
●●●●●
●●●●

●
●●
●●
●●
●●●
●●●
●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

Participant 0
one-to-one; iconic concatenation; mutual exclusivity

fep

fep fep

zup fep

fep wif

fep dax fep

kiki dax fep

fep dax kiki

Participant 1
 iconic concatenation;

gazzer

wif gazzer

gazzer lug

gazzer gazzer

gazzer zup dax

gazzer zup gazzer

dax zup gazzer

Participant 2

wif

blicket wif

wif wif

wif kiki

wif zup dax

wif zup wif

dax zup wif

Participant 3

kiki

dax kiki

kiki kiki

kiki wif

kiki lug fep

fep lug kiki

6/18/22, 5:42 PM human_beh_freeform.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/human_beh_freeform.html 4/8

●●●
●●●●
●●●●●
●●●●●
●●●●●●

●
●●
●●
●●
●●●
●●●
●●●

●
●●
●●
●●
●●●
●●●
●●●

●
●●
●●
●●
●●●
●●●●
●●●●

blicket wif

blicket blicket

blicket gazzer zup

zup gazzer blicket

blicket gazzer blicket

Participant 12
 one-to-one; iconic concatenation; mutual exclusivity

wif

wif blicket

wif wif

kiki wif

wif gazzer wif

wif gazzer dax

dax gazzer wif

Participant 13
 one-to-one; iconic concatenation; mutual exclusivity

zup

lug zup

zup zup

zup tufa

zup wif zup

fep wif zup

zup wif fep

Participant 14

dax

dax dax

fep dax

dax wif

dax gazzer dax

kiki gazzer dax

dax gazzer kiki

Participant 15
 one-to-one; iconic concatenation; mutual exclusivity

lug

A) Human responses B) BIML responses

6/21/22, 9:25 AM full_BIML_freeform_worksheet.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/full_BIML_freeform_worksheet.html 1/7

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●●
●●●
●●●
●●●●●
●●●●●●
●●●●●

●
●●
●●
●●
●●●
●●●●
●●●●

filename net_beh_worksheet_rep2.tar;
full_BIML_freeform_worksheet
Episode 0

support

dax

dax dax

tufa dax

dax lug

blicket gazzer dax

dax gazzer dax

dax gazzer blicket

query : 100.0% consistent

Episode 1

support

tufa

tufa tufa

tufa zup

lug tufa

tufa dax gazzer

tufa dax tufa

gazzer dax tufa

query : 0.0% consistent

Episode 2

support

tufa

blicket tufa

tufa kiki

tufa tufa

tufa dax tufa

wif dax tufa

tufa dax wif

query : 0.0% consistent

6/21/22, 9:25 AM full_BIML_freeform_worksheet.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/full_BIML_freeform_worksheet.html 1/7

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●●
●●●
●●●
●●●●●
●●●●●●
●●●●●

●
●●
●●
●●
●●●
●●●●
●●●●

filename net_beh_worksheet_rep2.tar;
full_BIML_freeform_worksheet
Episode 0

support

dax

dax dax

tufa dax

dax lug

blicket gazzer dax

dax gazzer dax

dax gazzer blicket

query : 100.0% consistent

Episode 1

support

tufa

tufa tufa

tufa zup

lug tufa

tufa dax gazzer

tufa dax tufa

gazzer dax tufa

query : 0.0% consistent

Episode 2

support

tufa

blicket tufa

tufa kiki

tufa tufa

tufa dax tufa

wif dax tufa

tufa dax wif

query : 0.0% consistent

1-to-1, IC, ME IC, ME 1-to-1, IC, ME IC

6/18/22, 5:42 PM human_beh_freeform.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/human_beh_freeform.html 1/8

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●
●●●
●●●●
●●●●
●●●●●
●●●●

●
●●
●●
●●
●●●
●●●
●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

Participant 0
one-to-one; iconic concatenation; mutual exclusivity

fep

fep fep

zup fep

fep wif

fep dax fep

kiki dax fep

fep dax kiki

Participant 1
 iconic concatenation;

gazzer

wif gazzer

gazzer lug

gazzer gazzer

gazzer zup dax

gazzer zup gazzer

dax zup gazzer

Participant 2

wif

blicket wif

wif wif

wif kiki

wif zup dax

wif zup wif

dax zup wif

Participant 3

kiki

dax kiki

kiki kiki

kiki wif

kiki lug fep

fep lug kiki

6/18/22, 5:42 PM human_beh_freeform.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/human_beh_freeform.html 1/8

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●
●●●
●●●●
●●●●
●●●●●
●●●●

●
●●
●●
●●
●●●
●●●
●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

Participant 0
one-to-one; iconic concatenation; mutual exclusivity

fep

fep fep

zup fep

fep wif

fep dax fep

kiki dax fep

fep dax kiki

Participant 1
 iconic concatenation;

gazzer

wif gazzer

gazzer lug

gazzer gazzer

gazzer zup dax

gazzer zup gazzer

dax zup gazzer

Participant 2

wif

blicket wif

wif wif

wif kiki

wif zup dax

wif zup wif

dax zup wif

Participant 3

kiki

dax kiki

kiki kiki

kiki wif

kiki lug fep

fep lug kiki

6/18/22, 5:42 PM human_beh_freeform.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/human_beh_freeform.html 4/8

●●●
●●●●
●●●●●
●●●●●
●●●●●●

●
●●
●●
●●
●●●
●●●
●●●

●
●●
●●
●●
●●●
●●●
●●●

●
●●
●●
●●
●●●
●●●●
●●●●

blicket wif

blicket blicket

blicket gazzer zup

zup gazzer blicket

blicket gazzer blicket

Participant 12
 one-to-one; iconic concatenation; mutual exclusivity

wif

wif blicket

wif wif

kiki wif

wif gazzer wif

wif gazzer dax

dax gazzer wif

Participant 13
 one-to-one; iconic concatenation; mutual exclusivity

zup

lug zup

zup zup

zup tufa

zup wif zup

fep wif zup

zup wif fep

Participant 14

dax

dax dax

fep dax

dax wif

dax gazzer dax

kiki gazzer dax

dax gazzer kiki

Participant 15
 one-to-one; iconic concatenation; mutual exclusivity

lug

A) Human responses B) BIML responses

6/21/22, 9:25 AM full_BIML_freeform_worksheet.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/full_BIML_freeform_worksheet.html 1/7

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●●
●●●
●●●
●●●●●
●●●●●●
●●●●●

●
●●
●●
●●
●●●
●●●●
●●●●

filename net_beh_worksheet_rep2.tar;
full_BIML_freeform_worksheet
Episode 0

support

dax

dax dax

tufa dax

dax lug

blicket gazzer dax

dax gazzer dax

dax gazzer blicket

query : 100.0% consistent

Episode 1

support

tufa

tufa tufa

tufa zup

lug tufa

tufa dax gazzer

tufa dax tufa

gazzer dax tufa

query : 0.0% consistent

Episode 2

support

tufa

blicket tufa

tufa kiki

tufa tufa

tufa dax tufa

wif dax tufa

tufa dax wif

query : 0.0% consistent

6/21/22, 9:25 AM full_BIML_freeform_worksheet.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/full_BIML_freeform_worksheet.html 1/7

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●●
●●●
●●●
●●●●●
●●●●●●
●●●●●

●
●●
●●
●●
●●●
●●●●
●●●●

filename net_beh_worksheet_rep2.tar;
full_BIML_freeform_worksheet
Episode 0

support

dax

dax dax

tufa dax

dax lug

blicket gazzer dax

dax gazzer dax

dax gazzer blicket

query : 100.0% consistent

Episode 1

support

tufa

tufa tufa

tufa zup

lug tufa

tufa dax gazzer

tufa dax tufa

gazzer dax tufa

query : 0.0% consistent

Episode 2

support

tufa

blicket tufa

tufa kiki

tufa tufa

tufa dax tufa

wif dax tufa

tufa dax wif

query : 0.0% consistent

1-to-1, IC, ME IC, ME 1-to-1, IC, ME IC

Alternative response 2

Goals of this work

1. Behavioral studies to compare humans and machines side-
by-side on the same tests of systematicity

2. An approach to building neural networks that can achieve
human-like systematic generalization, through an optimization
procedure that encourages systematicity

Goals for a computational framework

We would like neural network models that can do

• Few-shot induction of primitives and functions, and compose
them flexibly and algebraically

• Prefer hypotheses that capture certain input/output regularities
in meaning (1-to-1, IC, and ME)

• Model adult compositional skills (in this case, through meta-
learning)
• Importantly, we do not intend to model the process by which

people acquire these skills

query input support (inputs/outputs)

…

…

dax blicket zup | dax →●| zup →● | wif →● | … | wif blicket dax →●●● | …

query output

Nx

Mx

● ● ● <eos>

● ● ● <sos>

Figure 3: Transformer architecture optimized through BIML. The encoder (bottom) processes a

query input with a set of support examples (both inputs and outputs) as context, which are all

concatenated and passed as a single string (with token | between examples). The decoder (top) receives

messages from the encoder, and then produces the output sequence for the query. Once optimized,

the transformer can perform the same learning task as people (from Fig. 1) using only frozen weights.

The previous optimization phase includes examples from 100K grammatical structures. Each box is

an embedding (vector); input embeddings are light blue and latent embeddings are dark blue.

Model Few-shot learning Open-ended
Baseline -1926.5 -173.2
Symbolic (algebraic only) -538.1 —
Symbolic (tuned) -357.9 -92.6
BIML (algebraic only) -455.7 -150.1
BIML (joint) -364.3 -64.2
BIML -356.0 -61.1

Table 1: Log-likelihood of the human behavior for each model. Baseline chooses output symbols

uniformly at random. BIML (joint), as opposed to BIML, refers to optimizing one transformer over

both task types. A lapse rate was fit for each model that mixes between the model prediction and a

uniform distribution, for each symbol emission.

Both BIML and a symbolic system can successfully characterize the human few-shot
learning behavior, but the more open-ended behavioral task offers a point of differentiation.
The same transformer architecture was optimized on some participant behaviors and then
evaluated on held-out participants. The BIML transformer responds like the modal human
participant in 65% of samples (Fig. 2B left), perfectly instantiating the three key inductive
biases. It also succeeds in capturing more nuanced patterns of response that utilize some but
not all of the inductive biases (Fig. 2B right). Overall goodness-of-fit is summarized in Table
1. The BIML transformer outperforms all alternative models, including a symbolic system
instantiating the three inductive biases (Table 1; Symbolic–tuned) and the same transformer
optimized for strictly systematic generalization (BIML-algebraic only). Although a separate
BIML transformer was optimized for each task, importantly, a single transformer can be
optimized for both few-shot learning and open-ended instruction tasks (BIML–joint), with
minimal loss in performance on either.

Across few-shot and open-ended instruction following, BIML’s advantage over neural
networks trained in standard ways showcases the power of meta-learning for promoting
systematicity. BIML’s advantage over the symbolic models highlight that although the modal
human response can often be captured with a pristine symbolic form (e.g., Fig. 2A left), other
behavioral patterns require the flexibility and nuance that BIML provides (Fig. 2A right).

4

input

embedding

hidden

embedding

Legend

self-

attention

connections

Behaviorally-Informed Meta-Learning (BIML)
• Specify desired behavior

with high-level guidance
and/or direct human
examples

• Guides a neural network
to parameter values
that, when faced with a
novel task, produce
human-like
generalizations and
overcome challenges of
systematicity

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 1/3

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●
●●

●●● ●●
●● ●●
●●● ●●
●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●●

Filename net_rbn++_3layer_rep1.tar

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

yellow after red (78.2%) yellow after red (7.3%)

yellow after red (4.5%) yellow after red (4.5%)

yellow after red (2.7%) yellow after red (0.9%)

yellow after red (0.9%) yellow after red (0.9%)

green after yellow (83.6%) green after yellow (5.5%)

green after yellow (4.5%) green after yellow (1.8%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%)

yellow thrice (92.8%) yellow thrice (1.6%)

yellow thrice (1.6%) yellow thrice (1.6%)

yellow thrice (0.8%) yellow thrice (0.8%)

yellow thrice (0.8%)

red surround yellow (83.3%) red surround yellow (5.0%)

red surround yellow (4.2%) red surround yellow (3.3%)

red surround yellow (2.5%) red surround yellow (0.8%)

red surround yellow (0.8%)

green after yellow thrice (85.0%) green after yellow thrice (2.0%)

green after yellow thrice (2.0%) green after yellow thrice (2.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 1/3

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●
●●

●●● ●●
●● ●●
●●● ●●
●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●●

Filename net_rbn++_3layer_rep1.tar

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

yellow after red (78.2%) yellow after red (7.3%)

yellow after red (4.5%) yellow after red (4.5%)

yellow after red (2.7%) yellow after red (0.9%)

yellow after red (0.9%) yellow after red (0.9%)

green after yellow (83.6%) green after yellow (5.5%)

green after yellow (4.5%) green after yellow (1.8%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%)

yellow thrice (92.8%) yellow thrice (1.6%)

yellow thrice (1.6%) yellow thrice (1.6%)

yellow thrice (0.8%) yellow thrice (0.8%)

yellow thrice (0.8%)

red surround yellow (83.3%) red surround yellow (5.0%)

red surround yellow (4.2%) red surround yellow (3.3%)

red surround yellow (2.5%) red surround yellow (0.8%)

red surround yellow (0.8%)

green after yellow thrice (85.0%) green after yellow thrice (2.0%)

green after yellow thrice (2.0%) green after yellow thrice (2.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 1/3

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●
●●

●●● ●●
●● ●●
●●● ●●
●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●●

Filename net_rbn++_3layer_rep1.tar

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

yellow after red (78.2%) yellow after red (7.3%)

yellow after red (4.5%) yellow after red (4.5%)

yellow after red (2.7%) yellow after red (0.9%)

yellow after red (0.9%) yellow after red (0.9%)

green after yellow (83.6%) green after yellow (5.5%)

green after yellow (4.5%) green after yellow (1.8%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%)

yellow thrice (92.8%) yellow thrice (1.6%)

yellow thrice (1.6%) yellow thrice (1.6%)

yellow thrice (0.8%) yellow thrice (0.8%)

yellow thrice (0.8%)

red surround yellow (83.3%) red surround yellow (5.0%)

red surround yellow (4.2%) red surround yellow (3.3%)

red surround yellow (2.5%) red surround yellow (0.8%)

red surround yellow (0.8%)

green after yellow thrice (85.0%) green after yellow thrice (2.0%)

green after yellow thrice (2.0%) green after yellow thrice (2.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 1/3

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●
●●

●●● ●●
●● ●●
●●● ●●
●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●●

Filename net_rbn++_3layer_rep1.tar

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

yellow after red (78.2%) yellow after red (7.3%)

yellow after red (4.5%) yellow after red (4.5%)

yellow after red (2.7%) yellow after red (0.9%)

yellow after red (0.9%) yellow after red (0.9%)

green after yellow (83.6%) green after yellow (5.5%)

green after yellow (4.5%) green after yellow (1.8%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%)

yellow thrice (92.8%) yellow thrice (1.6%)

yellow thrice (1.6%) yellow thrice (1.6%)

yellow thrice (0.8%) yellow thrice (0.8%)

yellow thrice (0.8%)

red surround yellow (83.3%) red surround yellow (5.0%)

red surround yellow (4.2%) red surround yellow (3.3%)

red surround yellow (2.5%) red surround yellow (0.8%)

red surround yellow (0.8%)

green after yellow thrice (85.0%) green after yellow thrice (2.0%)

green after yellow thrice (2.0%) green after yellow thrice (2.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 2/3

●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●●●
●●●●●●

●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●
●●●●● ●●●●
●●●●● ●●●●●
●●●●● ●●●●●
●●●● ●●●●●
●●●● ●●●●●
●●●● ●●●●●
●●●●● ●●●●●
●●●● ●●●●

●●●●●● ●●●●●
●●

●●●●●●
●●

●●●●●
●

●●●●●● ●●●●●

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%)

yellow thrice after blue (83.0%) yellow thrice after blue (3.0%)

yellow thrice after blue (3.0%) yellow thrice after blue (3.0%)

yellow thrice after blue (2.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%)

yellow surround blue (86.7%) yellow surround blue (5.0%)

yellow surround blue (4.2%) yellow surround blue (1.7%)

yellow surround blue (0.8%) yellow surround blue (0.8%)

yellow surround blue (0.8%)

blue after green surround yellow (74.0%) blue after green surround yellow (5.0%)

blue after green surround yellow (4.0%) blue after green surround yellow (2.0%)

blue after green surround yellow (2.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

yellow surround yellow after yellow
thrice (79.0%) yellow surround yellow after

yellow thrice (6.0%)

yellow surround yellow after yellow
thrice (5.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice

(1.0%) yellow surround yellow after
yellow thrice

(1.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 2/3

●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●●●
●●●●●●

●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●
●●●●● ●●●●
●●●●● ●●●●●
●●●●● ●●●●●
●●●● ●●●●●
●●●● ●●●●●
●●●● ●●●●●
●●●●● ●●●●●
●●●● ●●●●

●●●●●● ●●●●●
●●

●●●●●●
●●

●●●●●
●

●●●●●● ●●●●●

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%)

yellow thrice after blue (83.0%) yellow thrice after blue (3.0%)

yellow thrice after blue (3.0%) yellow thrice after blue (3.0%)

yellow thrice after blue (2.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%)

yellow surround blue (86.7%) yellow surround blue (5.0%)

yellow surround blue (4.2%) yellow surround blue (1.7%)

yellow surround blue (0.8%) yellow surround blue (0.8%)

yellow surround blue (0.8%)

blue after green surround yellow (74.0%) blue after green surround yellow (5.0%)

blue after green surround yellow (4.0%) blue after green surround yellow (2.0%)

blue after green surround yellow (2.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

yellow surround yellow after yellow
thrice (79.0%) yellow surround yellow after

yellow thrice (6.0%)

yellow surround yellow after yellow
thrice (5.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice

(1.0%) yellow surround yellow after
yellow thrice

(1.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 2/3

●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●●●
●●●●●●

●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●
●●●●● ●●●●
●●●●● ●●●●●
●●●●● ●●●●●
●●●● ●●●●●
●●●● ●●●●●
●●●● ●●●●●
●●●●● ●●●●●
●●●● ●●●●

●●●●●● ●●●●●
●●

●●●●●●
●●

●●●●●
●

●●●●●● ●●●●●

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%)

yellow thrice after blue (83.0%) yellow thrice after blue (3.0%)

yellow thrice after blue (3.0%) yellow thrice after blue (3.0%)

yellow thrice after blue (2.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%)

yellow surround blue (86.7%) yellow surround blue (5.0%)

yellow surround blue (4.2%) yellow surround blue (1.7%)

yellow surround blue (0.8%) yellow surround blue (0.8%)

yellow surround blue (0.8%)

blue after green surround yellow (74.0%) blue after green surround yellow (5.0%)

blue after green surround yellow (4.0%) blue after green surround yellow (2.0%)

blue after green surround yellow (2.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

yellow surround yellow after yellow
thrice (79.0%) yellow surround yellow after

yellow thrice (6.0%)

yellow surround yellow after yellow
thrice (5.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice

(1.0%) yellow surround yellow after
yellow thrice

(1.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 2/3

●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●●●
●●●●●●

●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●
●●●●● ●●●●
●●●●● ●●●●●
●●●●● ●●●●●
●●●● ●●●●●
●●●● ●●●●●
●●●● ●●●●●
●●●●● ●●●●●
●●●● ●●●●

●●●●●● ●●●●●
●●

●●●●●●
●●

●●●●●
●

●●●●●● ●●●●●

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%)

yellow thrice after blue (83.0%) yellow thrice after blue (3.0%)

yellow thrice after blue (3.0%) yellow thrice after blue (3.0%)

yellow thrice after blue (2.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%)

yellow surround blue (86.7%) yellow surround blue (5.0%)

yellow surround blue (4.2%) yellow surround blue (1.7%)

yellow surround blue (0.8%) yellow surround blue (0.8%)

yellow surround blue (0.8%)

blue after green surround yellow (74.0%) blue after green surround yellow (5.0%)

blue after green surround yellow (4.0%) blue after green surround yellow (2.0%)

blue after green surround yellow (2.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

yellow surround yellow after yellow
thrice (79.0%) yellow surround yellow after

yellow thrice (6.0%)

yellow surround yellow after yellow
thrice (5.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice

(1.0%) yellow surround yellow after
yellow thrice

(1.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 3/3

●

●●●●●● ●●●●●
●

●●●●●● ●●●●●
●

●●●●●● ●●●●●
●

●●●●●●

●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●

●●●●●● ●●●●●●
●●

●●●●●●●
● ●●●●●●

●●●●●● ●●●●●●

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%)

yellow surround green after red
thrice (76.0%) yellow surround green after red

thrice (9.0%)

yellow surround green after red
thrice (2.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 3/3

●

●●●●●● ●●●●●
●

●●●●●● ●●●●●
●

●●●●●● ●●●●●
●

●●●●●●

●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●

●●●●●● ●●●●●●
●●

●●●●●●●
● ●●●●●●

●●●●●● ●●●●●●

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%)

yellow surround green after red
thrice (76.0%) yellow surround green after red

thrice (9.0%)

yellow surround green after red
thrice (2.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 3/3

●

●●●●●● ●●●●●
●

●●●●●● ●●●●●
●

●●●●●● ●●●●●
●

●●●●●●

●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●

●●●●●● ●●●●●●
●●

●●●●●●●
● ●●●●●●

●●●●●● ●●●●●●

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%)

yellow surround green after red
thrice (76.0%) yellow surround green after red

thrice (9.0%)

yellow surround green after red
thrice (2.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 3/3

●

●●●●●● ●●●●●
●

●●●●●● ●●●●●
●

●●●●●● ●●●●●
●

●●●●●●

●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●

●●●●●● ●●●●●●
●●

●●●●●●●
● ●●●●●●

●●●●●● ●●●●●●

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%)

yellow surround green after red
thrice (76.0%) yellow surround green after red

thrice (9.0%)

yellow surround green after red
thrice (2.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 2/2

●●●
●●● ●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●●● ●●●●
●●●● ●●●●
●●●●

●●●●●●
●●●●●● ●●●●
●●●●● ●●●●

●●●●●●
●●●●●● ●●●●
●●●●●● ●●●●●
●●●●●● ●●●●
●●●●

INPUT: yellow surround blue; OUTPUT: (target)

yellow surround blue (19) yellow surround blue (1)

yellow surround blue (1) yellow surround blue (1)

yellow surround blue (1) yellow surround blue (1)

INPUT: blue after green surround yellow; OUTPUT: (target)

blue after green surround yellow (13) blue after green surround yellow (2)

blue after green surround yellow (1) blue after green surround yellow (1)

blue after green surround yellow (1) blue after green surround yellow (1)

blue after green surround yellow (1)

INPUT: yellow surround yellow after yellow thrice; OUTPUT: (target)

yellow surround yellow after yellow thrice (15) yellow surround yellow after yellow thrice (3)

yellow surround yellow after yellow thrice (1) yellow surround yellow after yellow thrice (1)

INPUT: yellow surround green after red thrice; OUTPUT: (target)

yellow surround green after red thrice (14) yellow surround green after red thrice (1)

yellow surround green after red thrice (1) yellow surround green after red thrice (1)

yellow surround green after red thrice (1) yellow surround green after red thrice (1)

yellow surround green after red thrice (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 2/2

●●●
●●● ●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●●● ●●●●
●●●● ●●●●
●●●●

●●●●●●
●●●●●● ●●●●
●●●●● ●●●●

●●●●●●
●●●●●● ●●●●
●●●●●● ●●●●●
●●●●●● ●●●●
●●●●

INPUT: yellow surround blue; OUTPUT: (target)

yellow surround blue (19) yellow surround blue (1)

yellow surround blue (1) yellow surround blue (1)

yellow surround blue (1) yellow surround blue (1)

INPUT: blue after green surround yellow; OUTPUT: (target)

blue after green surround yellow (13) blue after green surround yellow (2)

blue after green surround yellow (1) blue after green surround yellow (1)

blue after green surround yellow (1) blue after green surround yellow (1)

blue after green surround yellow (1)

INPUT: yellow surround yellow after yellow thrice; OUTPUT: (target)

yellow surround yellow after yellow thrice (15) yellow surround yellow after yellow thrice (3)

yellow surround yellow after yellow thrice (1) yellow surround yellow after yellow thrice (1)

INPUT: yellow surround green after red thrice; OUTPUT: (target)

yellow surround green after red thrice (14) yellow surround green after red thrice (1)

yellow surround green after red thrice (1) yellow surround green after red thrice (1)

yellow surround green after red thrice (1) yellow surround green after red thrice (1)

yellow surround green after red thrice (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 2/2

●●●
●●● ●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●●● ●●●●
●●●● ●●●●
●●●●

●●●●●●
●●●●●● ●●●●
●●●●● ●●●●

●●●●●●
●●●●●● ●●●●
●●●●●● ●●●●●
●●●●●● ●●●●
●●●●

INPUT: yellow surround blue; OUTPUT: (target)

yellow surround blue (19) yellow surround blue (1)

yellow surround blue (1) yellow surround blue (1)

yellow surround blue (1) yellow surround blue (1)

INPUT: blue after green surround yellow; OUTPUT: (target)

blue after green surround yellow (13) blue after green surround yellow (2)

blue after green surround yellow (1) blue after green surround yellow (1)

blue after green surround yellow (1) blue after green surround yellow (1)

blue after green surround yellow (1)

INPUT: yellow surround yellow after yellow thrice; OUTPUT: (target)

yellow surround yellow after yellow thrice (15) yellow surround yellow after yellow thrice (3)

yellow surround yellow after yellow thrice (1) yellow surround yellow after yellow thrice (1)

INPUT: yellow surround green after red thrice; OUTPUT: (target)

yellow surround green after red thrice (14) yellow surround green after red thrice (1)

yellow surround green after red thrice (1) yellow surround green after red thrice (1)

yellow surround green after red thrice (1) yellow surround green after red thrice (1)

yellow surround green after red thrice (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 2/2

●●●
●●● ●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●●● ●●●●
●●●● ●●●●
●●●●

●●●●●●
●●●●●● ●●●●
●●●●● ●●●●

●●●●●●
●●●●●● ●●●●
●●●●●● ●●●●●
●●●●●● ●●●●
●●●●

INPUT: yellow surround blue; OUTPUT: (target)

yellow surround blue (19) yellow surround blue (1)

yellow surround blue (1) yellow surround blue (1)

yellow surround blue (1) yellow surround blue (1)

INPUT: blue after green surround yellow; OUTPUT: (target)

blue after green surround yellow (13) blue after green surround yellow (2)

blue after green surround yellow (1) blue after green surround yellow (1)

blue after green surround yellow (1) blue after green surround yellow (1)

blue after green surround yellow (1)

INPUT: yellow surround yellow after yellow thrice; OUTPUT: (target)

yellow surround yellow after yellow thrice (15) yellow surround yellow after yellow thrice (3)

yellow surround yellow after yellow thrice (1) yellow surround yellow after yellow thrice (1)

INPUT: yellow surround green after red thrice; OUTPUT: (target)

yellow surround green after red thrice (14) yellow surround green after red thrice (1)

yellow surround green after red thrice (1) yellow surround green after red thrice (1)

yellow surround green after red thrice (1) yellow surround green after red thrice (1)

yellow surround green after red thrice (1)

zup fep kiki lug

zup blicket wif kiki dax fep

i) Human responses ii) BIML responses
dax blicket zup

* *

* *

*

1-to-11-to-1

IC

*

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 1/3

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●
●●

●●● ●●
●● ●●
●●● ●●
●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●●

Filename net_rbn++_3layer_rep1.tar

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

yellow after red (78.2%) yellow after red (7.3%)

yellow after red (4.5%) yellow after red (4.5%)

yellow after red (2.7%) yellow after red (0.9%)

yellow after red (0.9%) yellow after red (0.9%)

green after yellow (83.6%) green after yellow (5.5%)

green after yellow (4.5%) green after yellow (1.8%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%)

yellow thrice (92.8%) yellow thrice (1.6%)

yellow thrice (1.6%) yellow thrice (1.6%)

yellow thrice (0.8%) yellow thrice (0.8%)

yellow thrice (0.8%)

red surround yellow (83.3%) red surround yellow (5.0%)

red surround yellow (4.2%) red surround yellow (3.3%)

red surround yellow (2.5%) red surround yellow (0.8%)

red surround yellow (0.8%)

green after yellow thrice (85.0%) green after yellow thrice (2.0%)

green after yellow thrice (2.0%) green after yellow thrice (2.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 1/3

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●
●●

●●● ●●
●● ●●
●●● ●●
●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●●

Filename net_rbn++_3layer_rep1.tar

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

yellow after red (78.2%) yellow after red (7.3%)

yellow after red (4.5%) yellow after red (4.5%)

yellow after red (2.7%) yellow after red (0.9%)

yellow after red (0.9%) yellow after red (0.9%)

green after yellow (83.6%) green after yellow (5.5%)

green after yellow (4.5%) green after yellow (1.8%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%)

yellow thrice (92.8%) yellow thrice (1.6%)

yellow thrice (1.6%) yellow thrice (1.6%)

yellow thrice (0.8%) yellow thrice (0.8%)

yellow thrice (0.8%)

red surround yellow (83.3%) red surround yellow (5.0%)

red surround yellow (4.2%) red surround yellow (3.3%)

red surround yellow (2.5%) red surround yellow (0.8%)

red surround yellow (0.8%)

green after yellow thrice (85.0%) green after yellow thrice (2.0%)

green after yellow thrice (2.0%) green after yellow thrice (2.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 1/3

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●
●●

●●● ●●
●● ●●
●●● ●●
●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●●

Filename net_rbn++_3layer_rep1.tar

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

yellow after red (78.2%) yellow after red (7.3%)

yellow after red (4.5%) yellow after red (4.5%)

yellow after red (2.7%) yellow after red (0.9%)

yellow after red (0.9%) yellow after red (0.9%)

green after yellow (83.6%) green after yellow (5.5%)

green after yellow (4.5%) green after yellow (1.8%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%)

yellow thrice (92.8%) yellow thrice (1.6%)

yellow thrice (1.6%) yellow thrice (1.6%)

yellow thrice (0.8%) yellow thrice (0.8%)

yellow thrice (0.8%)

red surround yellow (83.3%) red surround yellow (5.0%)

red surround yellow (4.2%) red surround yellow (3.3%)

red surround yellow (2.5%) red surround yellow (0.8%)

red surround yellow (0.8%)

green after yellow thrice (85.0%) green after yellow thrice (2.0%)

green after yellow thrice (2.0%) green after yellow thrice (2.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 1/3

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●
●●

●●● ●●
●● ●●
●●● ●●
●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●●

Filename net_rbn++_3layer_rep1.tar

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

yellow after red (78.2%) yellow after red (7.3%)

yellow after red (4.5%) yellow after red (4.5%)

yellow after red (2.7%) yellow after red (0.9%)

yellow after red (0.9%) yellow after red (0.9%)

green after yellow (83.6%) green after yellow (5.5%)

green after yellow (4.5%) green after yellow (1.8%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%)

yellow thrice (92.8%) yellow thrice (1.6%)

yellow thrice (1.6%) yellow thrice (1.6%)

yellow thrice (0.8%) yellow thrice (0.8%)

yellow thrice (0.8%)

red surround yellow (83.3%) red surround yellow (5.0%)

red surround yellow (4.2%) red surround yellow (3.3%)

red surround yellow (2.5%) red surround yellow (0.8%)

red surround yellow (0.8%)

green after yellow thrice (85.0%) green after yellow thrice (2.0%)

green after yellow thrice (2.0%) green after yellow thrice (2.0%)

IC IC

1-to-11-to-1 1-to-1

zup kiki dax zup kiki dax

1-to-1

IC IC

IC

1-to-1

dax blicket zup

zup fep kiki lug

zup blicket wif kiki dax fep

**

B) Test instructionsA) Study instructions

Figure 1: Few-shot instruction learning task involves generating sequences of abstract outputs (colored

circles) in response to instructions (pseudo-words). Based on the study instructions (A; headings were

not provided to participants), humans and the BIML model executed test instructions (B; 4 of 10

shown). The four most frequent responses are shown for people (marked with count in parentheses)

and the BIML model (marked with percentage of samples). Superscripts indicate the following: * is

the algebraic answer, 1-to-1 is an one-to-one error, and IC is an iconic concatenation error.

of grammaticality are not needed. Instead, participants generate sequences of symbols in
response to sequences of words, allowing computational systems to directly model the resulting
data by building upon the powerful sequence-to-sequence (seq2seq) toolkit from machine
learning (39,40). All experiments were run on Amazon Mechanical Turk and psiTurk (41).

Systematic generalization was evaluated through a few-shot learning paradigm. As il-
lustrated in Fig. 1, participants were provided with a curriculum of 14 study instructions
(input/output pairs) and asked to produce outputs for 10 test instructions. The study instruc-
tions were consistent with an underlying interpretation grammar, which derives outputs from
inputs through a set of compositional re-write rules (see Supplement). Evaluated against this
algebraic standard, the average performance across participants was 84.3% correct (N = 25)
for exactly matching the entire output sequence (marked with * in Fig. 1B-i). Notably,
participants often generalized correctly to longer output sequences than seen during training
(72.5% correct; an example is shown as the last instruction in Fig. 1B-i), which is a type of
generalization that neural networks often struggle with (16, 42, 43). When deviating from
this algebraic standard, the responses were still highly non-random and suggestive of strong
inductive biases. Many errors involved “one-to-one” translations that mapped each input word
to exactly one output symbol, as if all words were primitives (24.4% of all errors; marked with
1-to-1 in Fig. 1B-i). Other errors involved misapplying a function that requires reversing the
order of its input arguments (function 3 or “kiki” in Fig. 1), suggesting an “iconic concatenation”
bias for maintaining the order of the input words in the order of the output symbols (23.3% of
all errors involving function 3 followed this pattern; marked with IC in Fig. 1B-i). Beyond this
task, these response patterns can be compared to biases in language acquisition more generally;
indeed, forms of one-to-one (44,45) and iconic concatenation (46–48) are widely attested in
natural language.

These inductive biases were evaluated more directly through an open-ended instruction
task. Different participants were asked to make plausible guesses regarding the outputs of 7
novel instructions and how they relate to one another (responding to “fep fep” or “zup fep”
with a series of colored circles), without seeing any input/output examples to influence their
responses (see Fig. 2 for full task; Supplement for more details). Despite the unconstrained
nature of the test, people’s responses were highly structured and confirm the previous two
inductive biases. People’s responses also followed a third bias related to mutual exclusivity
(ME) which encourages assigning unique meanings to unique words (44,45). Reflecting the
strong influence of the biases, the majority of participants (17 of 29; 58.6%) responded with a
pattern analogous to that in Fig. 2 (leftmost column in A and B), which is perfectly consistent
with all three inductive biases. Across all of the responses, X of 29 participants followed

2

Support inputs/outputs

Optimization over a series of dynamically changing seq2seq tasks (episodes) that encourage
systematic generalization (Lake, 2019, NeurIPS).
• Each episode samples a latent grammar, with 4 primitive and 3 compositional functions
• Queries paired with both grammar-based (algebraic) and biased-based outputs

Episode 1 Episode 2
Support

Query Query

Support

……

Latent Grammar 1
zup → ●
fep → ●
kiki → ●
tufa → ●
x1 blicket u1 →[u1] [x1]
x1 lug x2 → [x2] [x1] [x1]
x1 wif u1 → [u1] [x1]
u1 x1 → [u1] [x1]

Latent Grammar 2
gazzer → ●
fep → ●
kiki → ●
dax → ●
 u1 wif u2 → [u1] [u2]
 x1 tufa x2 → [x1] [x2] [x1]
 x1 blicket → [x1] [x1]
 u1 x1 → [u1] [x1]

Behaviorally-Informed Meta-Learning (BIML)

Comparing people and BIML on few-shot
instruction learning

• After optimization, BIML’s most likely outputs
are perfectly systematic (100% consistent
with grammar)

• When sampling over possible outputs, BIML
accuracy (83%) is closer to human
performance

• For predicting human responses (algebraic
and bias-based)…

query input support (inputs/outputs)

…

…

dax blicket zup | dax →●| zup →● | wif →● | … | wif blicket dax →●●● | …

query output

Nx

Mx

● ● ● <eos>

● ● ● <sos>

Figure 3: Transformer architecture optimized through BIML. The encoder (bottom) processes a

query input with a set of support examples (both inputs and outputs) as context, which are all

concatenated and passed as a single string (with token | between examples). The decoder (top) receives

messages from the encoder, and then produces the output sequence for the query. Once optimized,

the transformer can perform the same learning task as people (from Fig. 1) using only frozen weights.

The previous optimization phase includes examples from 100K grammatical structures. Each box is

an embedding (vector); input embeddings are light blue and latent embeddings are dark blue.

Model Few-shot learning Open-ended
Baseline -1926.5 -173.2
Symbolic (algebraic only) -538.1 —
Symbolic (tuned) -357.9 -92.6
BIML (algebraic only) -455.7 -150.1
BIML (joint) -364.3 -64.2
BIML -356.0 -61.1

Table 1: Log-likelihood of the human behavior for each model. Baseline chooses output symbols

uniformly at random. BIML (joint), as opposed to BIML, refers to optimizing one transformer over

both task types. A lapse rate was fit for each model that mixes between the model prediction and a

uniform distribution, for each symbol emission.

Both BIML and a symbolic system can successfully characterize the human few-shot
learning behavior, but the more open-ended behavioral task offers a point of differentiation.
The same transformer architecture was optimized on some participant behaviors and then
evaluated on held-out participants. The BIML transformer responds like the modal human
participant in 65% of samples (Fig. 2B left), perfectly instantiating the three key inductive
biases. It also succeeds in capturing more nuanced patterns of response that utilize some but
not all of the inductive biases (Fig. 2B right). Overall goodness-of-fit is summarized in Table
1. The BIML transformer outperforms all alternative models, including a symbolic system
instantiating the three inductive biases (Table 1; Symbolic–tuned) and the same transformer
optimized for strictly systematic generalization (BIML-algebraic only). Although a separate
BIML transformer was optimized for each task, importantly, a single transformer can be
optimized for both few-shot learning and open-ended instruction tasks (BIML–joint), with
minimal loss in performance on either.

Across few-shot and open-ended instruction following, BIML’s advantage over neural
networks trained in standard ways showcases the power of meta-learning for promoting
systematicity. BIML’s advantage over the symbolic models highlight that although the modal
human response can often be captured with a pristine symbolic form (e.g., Fig. 2A left), other
behavioral patterns require the flexibility and nuance that BIML provides (Fig. 2A right).

4

Log-likelihood
 (larger is better)

Baseline -1926.5

Symbolic (algebraic only) -538.1

Symbolic (tuned) -357.9

BIML (algebraic only) -455.7

BIML -356.0

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 1/3

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●
●●

●●● ●●
●● ●●
●●● ●●
●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●●

Filename net_rbn++_3layer_rep1.tar

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

yellow after red (78.2%) yellow after red (7.3%)

yellow after red (4.5%) yellow after red (4.5%)

yellow after red (2.7%) yellow after red (0.9%)

yellow after red (0.9%) yellow after red (0.9%)

green after yellow (83.6%) green after yellow (5.5%)

green after yellow (4.5%) green after yellow (1.8%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%)

yellow thrice (92.8%) yellow thrice (1.6%)

yellow thrice (1.6%) yellow thrice (1.6%)

yellow thrice (0.8%) yellow thrice (0.8%)

yellow thrice (0.8%)

red surround yellow (83.3%) red surround yellow (5.0%)

red surround yellow (4.2%) red surround yellow (3.3%)

red surround yellow (2.5%) red surround yellow (0.8%)

red surround yellow (0.8%)

green after yellow thrice (85.0%) green after yellow thrice (2.0%)

green after yellow thrice (2.0%) green after yellow thrice (2.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 1/3

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●
●●

●●● ●●
●● ●●
●●● ●●
●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●●

Filename net_rbn++_3layer_rep1.tar

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

yellow after red (78.2%) yellow after red (7.3%)

yellow after red (4.5%) yellow after red (4.5%)

yellow after red (2.7%) yellow after red (0.9%)

yellow after red (0.9%) yellow after red (0.9%)

green after yellow (83.6%) green after yellow (5.5%)

green after yellow (4.5%) green after yellow (1.8%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%)

yellow thrice (92.8%) yellow thrice (1.6%)

yellow thrice (1.6%) yellow thrice (1.6%)

yellow thrice (0.8%) yellow thrice (0.8%)

yellow thrice (0.8%)

red surround yellow (83.3%) red surround yellow (5.0%)

red surround yellow (4.2%) red surround yellow (3.3%)

red surround yellow (2.5%) red surround yellow (0.8%)

red surround yellow (0.8%)

green after yellow thrice (85.0%) green after yellow thrice (2.0%)

green after yellow thrice (2.0%) green after yellow thrice (2.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 1/3

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●
●●

●●● ●●
●● ●●
●●● ●●
●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●●

Filename net_rbn++_3layer_rep1.tar

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

yellow after red (78.2%) yellow after red (7.3%)

yellow after red (4.5%) yellow after red (4.5%)

yellow after red (2.7%) yellow after red (0.9%)

yellow after red (0.9%) yellow after red (0.9%)

green after yellow (83.6%) green after yellow (5.5%)

green after yellow (4.5%) green after yellow (1.8%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%)

yellow thrice (92.8%) yellow thrice (1.6%)

yellow thrice (1.6%) yellow thrice (1.6%)

yellow thrice (0.8%) yellow thrice (0.8%)

yellow thrice (0.8%)

red surround yellow (83.3%) red surround yellow (5.0%)

red surround yellow (4.2%) red surround yellow (3.3%)

red surround yellow (2.5%) red surround yellow (0.8%)

red surround yellow (0.8%)

green after yellow thrice (85.0%) green after yellow thrice (2.0%)

green after yellow thrice (2.0%) green after yellow thrice (2.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 1/3

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●
●●

●●● ●●
●● ●●
●●● ●●
●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●●

Filename net_rbn++_3layer_rep1.tar

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

yellow after red (78.2%) yellow after red (7.3%)

yellow after red (4.5%) yellow after red (4.5%)

yellow after red (2.7%) yellow after red (0.9%)

yellow after red (0.9%) yellow after red (0.9%)

green after yellow (83.6%) green after yellow (5.5%)

green after yellow (4.5%) green after yellow (1.8%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%)

yellow thrice (92.8%) yellow thrice (1.6%)

yellow thrice (1.6%) yellow thrice (1.6%)

yellow thrice (0.8%) yellow thrice (0.8%)

yellow thrice (0.8%)

red surround yellow (83.3%) red surround yellow (5.0%)

red surround yellow (4.2%) red surround yellow (3.3%)

red surround yellow (2.5%) red surround yellow (0.8%)

red surround yellow (0.8%)

green after yellow thrice (85.0%) green after yellow thrice (2.0%)

green after yellow thrice (2.0%) green after yellow thrice (2.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 2/3

●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●●●
●●●●●●

●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●
●●●●● ●●●●
●●●●● ●●●●●
●●●●● ●●●●●
●●●● ●●●●●
●●●● ●●●●●
●●●● ●●●●●
●●●●● ●●●●●
●●●● ●●●●

●●●●●● ●●●●●
●●

●●●●●●
●●

●●●●●
●

●●●●●● ●●●●●

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%)

yellow thrice after blue (83.0%) yellow thrice after blue (3.0%)

yellow thrice after blue (3.0%) yellow thrice after blue (3.0%)

yellow thrice after blue (2.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%)

yellow surround blue (86.7%) yellow surround blue (5.0%)

yellow surround blue (4.2%) yellow surround blue (1.7%)

yellow surround blue (0.8%) yellow surround blue (0.8%)

yellow surround blue (0.8%)

blue after green surround yellow (74.0%) blue after green surround yellow (5.0%)

blue after green surround yellow (4.0%) blue after green surround yellow (2.0%)

blue after green surround yellow (2.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

yellow surround yellow after yellow
thrice (79.0%) yellow surround yellow after

yellow thrice (6.0%)

yellow surround yellow after yellow
thrice (5.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice

(1.0%) yellow surround yellow after
yellow thrice

(1.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 2/3

●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●●●
●●●●●●

●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●
●●●●● ●●●●
●●●●● ●●●●●
●●●●● ●●●●●
●●●● ●●●●●
●●●● ●●●●●
●●●● ●●●●●
●●●●● ●●●●●
●●●● ●●●●

●●●●●● ●●●●●
●●

●●●●●●
●●

●●●●●
●

●●●●●● ●●●●●

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%)

yellow thrice after blue (83.0%) yellow thrice after blue (3.0%)

yellow thrice after blue (3.0%) yellow thrice after blue (3.0%)

yellow thrice after blue (2.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%)

yellow surround blue (86.7%) yellow surround blue (5.0%)

yellow surround blue (4.2%) yellow surround blue (1.7%)

yellow surround blue (0.8%) yellow surround blue (0.8%)

yellow surround blue (0.8%)

blue after green surround yellow (74.0%) blue after green surround yellow (5.0%)

blue after green surround yellow (4.0%) blue after green surround yellow (2.0%)

blue after green surround yellow (2.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

yellow surround yellow after yellow
thrice (79.0%) yellow surround yellow after

yellow thrice (6.0%)

yellow surround yellow after yellow
thrice (5.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice

(1.0%) yellow surround yellow after
yellow thrice

(1.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 2/3

●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●●●
●●●●●●

●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●
●●●●● ●●●●
●●●●● ●●●●●
●●●●● ●●●●●
●●●● ●●●●●
●●●● ●●●●●
●●●● ●●●●●
●●●●● ●●●●●
●●●● ●●●●

●●●●●● ●●●●●
●●

●●●●●●
●●

●●●●●
●

●●●●●● ●●●●●

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%)

yellow thrice after blue (83.0%) yellow thrice after blue (3.0%)

yellow thrice after blue (3.0%) yellow thrice after blue (3.0%)

yellow thrice after blue (2.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%)

yellow surround blue (86.7%) yellow surround blue (5.0%)

yellow surround blue (4.2%) yellow surround blue (1.7%)

yellow surround blue (0.8%) yellow surround blue (0.8%)

yellow surround blue (0.8%)

blue after green surround yellow (74.0%) blue after green surround yellow (5.0%)

blue after green surround yellow (4.0%) blue after green surround yellow (2.0%)

blue after green surround yellow (2.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

yellow surround yellow after yellow
thrice (79.0%) yellow surround yellow after

yellow thrice (6.0%)

yellow surround yellow after yellow
thrice (5.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice

(1.0%) yellow surround yellow after
yellow thrice

(1.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 2/3

●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●●●
●●●●●●

●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●
●●●●● ●●●●
●●●●● ●●●●●
●●●●● ●●●●●
●●●● ●●●●●
●●●● ●●●●●
●●●● ●●●●●
●●●●● ●●●●●
●●●● ●●●●

●●●●●● ●●●●●
●●

●●●●●●
●●

●●●●●
●

●●●●●● ●●●●●

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%)

yellow thrice after blue (83.0%) yellow thrice after blue (3.0%)

yellow thrice after blue (3.0%) yellow thrice after blue (3.0%)

yellow thrice after blue (2.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%)

yellow surround blue (86.7%) yellow surround blue (5.0%)

yellow surround blue (4.2%) yellow surround blue (1.7%)

yellow surround blue (0.8%) yellow surround blue (0.8%)

yellow surround blue (0.8%)

blue after green surround yellow (74.0%) blue after green surround yellow (5.0%)

blue after green surround yellow (4.0%) blue after green surround yellow (2.0%)

blue after green surround yellow (2.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

yellow surround yellow after yellow
thrice (79.0%) yellow surround yellow after

yellow thrice (6.0%)

yellow surround yellow after yellow
thrice (5.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice

(1.0%) yellow surround yellow after
yellow thrice

(1.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 3/3

●

●●●●●● ●●●●●
●

●●●●●● ●●●●●
●

●●●●●● ●●●●●
●

●●●●●●

●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●

●●●●●● ●●●●●●
●●

●●●●●●●
● ●●●●●●

●●●●●● ●●●●●●

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%)

yellow surround green after red
thrice (76.0%) yellow surround green after red

thrice (9.0%)

yellow surround green after red
thrice (2.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 3/3

●

●●●●●● ●●●●●
●

●●●●●● ●●●●●
●

●●●●●● ●●●●●
●

●●●●●●

●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●

●●●●●● ●●●●●●
●●

●●●●●●●
● ●●●●●●

●●●●●● ●●●●●●

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%)

yellow surround green after red
thrice (76.0%) yellow surround green after red

thrice (9.0%)

yellow surround green after red
thrice (2.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 3/3

●

●●●●●● ●●●●●
●

●●●●●● ●●●●●
●

●●●●●● ●●●●●
●

●●●●●●

●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●

●●●●●● ●●●●●●
●●

●●●●●●●
● ●●●●●●

●●●●●● ●●●●●●

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%)

yellow surround green after red
thrice (76.0%) yellow surround green after red

thrice (9.0%)

yellow surround green after red
thrice (2.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 3/3

●

●●●●●● ●●●●●
●

●●●●●● ●●●●●
●

●●●●●● ●●●●●
●

●●●●●●

●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●

●●●●●● ●●●●●●
●●

●●●●●●●
● ●●●●●●

●●●●●● ●●●●●●

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%)

yellow surround green after red
thrice (76.0%) yellow surround green after red

thrice (9.0%)

yellow surround green after red
thrice (2.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 2/2

●●●
●●● ●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●●● ●●●●
●●●● ●●●●
●●●●

●●●●●●
●●●●●● ●●●●
●●●●● ●●●●

●●●●●●
●●●●●● ●●●●
●●●●●● ●●●●●
●●●●●● ●●●●
●●●●

INPUT: yellow surround blue; OUTPUT: (target)

yellow surround blue (19) yellow surround blue (1)

yellow surround blue (1) yellow surround blue (1)

yellow surround blue (1) yellow surround blue (1)

INPUT: blue after green surround yellow; OUTPUT: (target)

blue after green surround yellow (13) blue after green surround yellow (2)

blue after green surround yellow (1) blue after green surround yellow (1)

blue after green surround yellow (1) blue after green surround yellow (1)

blue after green surround yellow (1)

INPUT: yellow surround yellow after yellow thrice; OUTPUT: (target)

yellow surround yellow after yellow thrice (15) yellow surround yellow after yellow thrice (3)

yellow surround yellow after yellow thrice (1) yellow surround yellow after yellow thrice (1)

INPUT: yellow surround green after red thrice; OUTPUT: (target)

yellow surround green after red thrice (14) yellow surround green after red thrice (1)

yellow surround green after red thrice (1) yellow surround green after red thrice (1)

yellow surround green after red thrice (1) yellow surround green after red thrice (1)

yellow surround green after red thrice (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 2/2

●●●
●●● ●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●●● ●●●●
●●●● ●●●●
●●●●

●●●●●●
●●●●●● ●●●●
●●●●● ●●●●

●●●●●●
●●●●●● ●●●●
●●●●●● ●●●●●
●●●●●● ●●●●
●●●●

INPUT: yellow surround blue; OUTPUT: (target)

yellow surround blue (19) yellow surround blue (1)

yellow surround blue (1) yellow surround blue (1)

yellow surround blue (1) yellow surround blue (1)

INPUT: blue after green surround yellow; OUTPUT: (target)

blue after green surround yellow (13) blue after green surround yellow (2)

blue after green surround yellow (1) blue after green surround yellow (1)

blue after green surround yellow (1) blue after green surround yellow (1)

blue after green surround yellow (1)

INPUT: yellow surround yellow after yellow thrice; OUTPUT: (target)

yellow surround yellow after yellow thrice (15) yellow surround yellow after yellow thrice (3)

yellow surround yellow after yellow thrice (1) yellow surround yellow after yellow thrice (1)

INPUT: yellow surround green after red thrice; OUTPUT: (target)

yellow surround green after red thrice (14) yellow surround green after red thrice (1)

yellow surround green after red thrice (1) yellow surround green after red thrice (1)

yellow surround green after red thrice (1) yellow surround green after red thrice (1)

yellow surround green after red thrice (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 2/2

●●●
●●● ●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●●● ●●●●
●●●● ●●●●
●●●●

●●●●●●
●●●●●● ●●●●
●●●●● ●●●●

●●●●●●
●●●●●● ●●●●
●●●●●● ●●●●●
●●●●●● ●●●●
●●●●

INPUT: yellow surround blue; OUTPUT: (target)

yellow surround blue (19) yellow surround blue (1)

yellow surround blue (1) yellow surround blue (1)

yellow surround blue (1) yellow surround blue (1)

INPUT: blue after green surround yellow; OUTPUT: (target)

blue after green surround yellow (13) blue after green surround yellow (2)

blue after green surround yellow (1) blue after green surround yellow (1)

blue after green surround yellow (1) blue after green surround yellow (1)

blue after green surround yellow (1)

INPUT: yellow surround yellow after yellow thrice; OUTPUT: (target)

yellow surround yellow after yellow thrice (15) yellow surround yellow after yellow thrice (3)

yellow surround yellow after yellow thrice (1) yellow surround yellow after yellow thrice (1)

INPUT: yellow surround green after red thrice; OUTPUT: (target)

yellow surround green after red thrice (14) yellow surround green after red thrice (1)

yellow surround green after red thrice (1) yellow surround green after red thrice (1)

yellow surround green after red thrice (1) yellow surround green after red thrice (1)

yellow surround green after red thrice (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 2/2

●●●
●●● ●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●●● ●●●●
●●●● ●●●●
●●●●

●●●●●●
●●●●●● ●●●●
●●●●● ●●●●

●●●●●●
●●●●●● ●●●●
●●●●●● ●●●●●
●●●●●● ●●●●
●●●●

INPUT: yellow surround blue; OUTPUT: (target)

yellow surround blue (19) yellow surround blue (1)

yellow surround blue (1) yellow surround blue (1)

yellow surround blue (1) yellow surround blue (1)

INPUT: blue after green surround yellow; OUTPUT: (target)

blue after green surround yellow (13) blue after green surround yellow (2)

blue after green surround yellow (1) blue after green surround yellow (1)

blue after green surround yellow (1) blue after green surround yellow (1)

blue after green surround yellow (1)

INPUT: yellow surround yellow after yellow thrice; OUTPUT: (target)

yellow surround yellow after yellow thrice (15) yellow surround yellow after yellow thrice (3)

yellow surround yellow after yellow thrice (1) yellow surround yellow after yellow thrice (1)

INPUT: yellow surround green after red thrice; OUTPUT: (target)

yellow surround green after red thrice (14) yellow surround green after red thrice (1)

yellow surround green after red thrice (1) yellow surround green after red thrice (1)

yellow surround green after red thrice (1) yellow surround green after red thrice (1)

yellow surround green after red thrice (1)

zup fep kiki lug

zup blicket wif kiki dax fep

i) Human responses ii) BIML responses
dax blicket zup

* *

* *

*

1-to-11-to-1

IC

*

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 1/3

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●
●●

●●● ●●
●● ●●
●●● ●●
●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●●

Filename net_rbn++_3layer_rep1.tar

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

yellow after red (78.2%) yellow after red (7.3%)

yellow after red (4.5%) yellow after red (4.5%)

yellow after red (2.7%) yellow after red (0.9%)

yellow after red (0.9%) yellow after red (0.9%)

green after yellow (83.6%) green after yellow (5.5%)

green after yellow (4.5%) green after yellow (1.8%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%)

yellow thrice (92.8%) yellow thrice (1.6%)

yellow thrice (1.6%) yellow thrice (1.6%)

yellow thrice (0.8%) yellow thrice (0.8%)

yellow thrice (0.8%)

red surround yellow (83.3%) red surround yellow (5.0%)

red surround yellow (4.2%) red surround yellow (3.3%)

red surround yellow (2.5%) red surround yellow (0.8%)

red surround yellow (0.8%)

green after yellow thrice (85.0%) green after yellow thrice (2.0%)

green after yellow thrice (2.0%) green after yellow thrice (2.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 1/3

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●
●●

●●● ●●
●● ●●
●●● ●●
●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●●

Filename net_rbn++_3layer_rep1.tar

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

yellow after red (78.2%) yellow after red (7.3%)

yellow after red (4.5%) yellow after red (4.5%)

yellow after red (2.7%) yellow after red (0.9%)

yellow after red (0.9%) yellow after red (0.9%)

green after yellow (83.6%) green after yellow (5.5%)

green after yellow (4.5%) green after yellow (1.8%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%)

yellow thrice (92.8%) yellow thrice (1.6%)

yellow thrice (1.6%) yellow thrice (1.6%)

yellow thrice (0.8%) yellow thrice (0.8%)

yellow thrice (0.8%)

red surround yellow (83.3%) red surround yellow (5.0%)

red surround yellow (4.2%) red surround yellow (3.3%)

red surround yellow (2.5%) red surround yellow (0.8%)

red surround yellow (0.8%)

green after yellow thrice (85.0%) green after yellow thrice (2.0%)

green after yellow thrice (2.0%) green after yellow thrice (2.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 1/3

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●
●●

●●● ●●
●● ●●
●●● ●●
●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●●

Filename net_rbn++_3layer_rep1.tar

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

yellow after red (78.2%) yellow after red (7.3%)

yellow after red (4.5%) yellow after red (4.5%)

yellow after red (2.7%) yellow after red (0.9%)

yellow after red (0.9%) yellow after red (0.9%)

green after yellow (83.6%) green after yellow (5.5%)

green after yellow (4.5%) green after yellow (1.8%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%)

yellow thrice (92.8%) yellow thrice (1.6%)

yellow thrice (1.6%) yellow thrice (1.6%)

yellow thrice (0.8%) yellow thrice (0.8%)

yellow thrice (0.8%)

red surround yellow (83.3%) red surround yellow (5.0%)

red surround yellow (4.2%) red surround yellow (3.3%)

red surround yellow (2.5%) red surround yellow (0.8%)

red surround yellow (0.8%)

green after yellow thrice (85.0%) green after yellow thrice (2.0%)

green after yellow thrice (2.0%) green after yellow thrice (2.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 1/3

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●
●●

●●● ●●
●● ●●
●●● ●●
●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●●

Filename net_rbn++_3layer_rep1.tar

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

yellow after red (78.2%) yellow after red (7.3%)

yellow after red (4.5%) yellow after red (4.5%)

yellow after red (2.7%) yellow after red (0.9%)

yellow after red (0.9%) yellow after red (0.9%)

green after yellow (83.6%) green after yellow (5.5%)

green after yellow (4.5%) green after yellow (1.8%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%)

yellow thrice (92.8%) yellow thrice (1.6%)

yellow thrice (1.6%) yellow thrice (1.6%)

yellow thrice (0.8%) yellow thrice (0.8%)

yellow thrice (0.8%)

red surround yellow (83.3%) red surround yellow (5.0%)

red surround yellow (4.2%) red surround yellow (3.3%)

red surround yellow (2.5%) red surround yellow (0.8%)

red surround yellow (0.8%)

green after yellow thrice (85.0%) green after yellow thrice (2.0%)

green after yellow thrice (2.0%) green after yellow thrice (2.0%)

IC IC

1-to-11-to-1 1-to-1

zup kiki dax zup kiki dax

1-to-1

IC IC

IC

1-to-1

dax blicket zup

zup fep kiki lug

zup blicket wif kiki dax fep

**

B) Test instructionsA) Study instructions

Figure 1: Few-shot instruction learning task involves generating sequences of abstract outputs (colored

circles) in response to instructions (pseudo-words). Based on the study instructions (A; headings were

not provided to participants), humans and the BIML model executed test instructions (B; 4 of 10

shown). The four most frequent responses are shown for people (marked with count in parentheses)

and the BIML model (marked with percentage of samples). Superscripts indicate the following: * is

the algebraic answer, 1-to-1 is an one-to-one error, and IC is an iconic concatenation error.

of grammaticality are not needed. Instead, participants generate sequences of symbols in
response to sequences of words, allowing computational systems to directly model the resulting
data by building upon the powerful sequence-to-sequence (seq2seq) toolkit from machine
learning (39,40). All experiments were run on Amazon Mechanical Turk and psiTurk (41).

Systematic generalization was evaluated through a few-shot learning paradigm. As il-
lustrated in Fig. 1, participants were provided with a curriculum of 14 study instructions
(input/output pairs) and asked to produce outputs for 10 test instructions. The study instruc-
tions were consistent with an underlying interpretation grammar, which derives outputs from
inputs through a set of compositional re-write rules (see Supplement). Evaluated against this
algebraic standard, the average performance across participants was 84.3% correct (N = 25)
for exactly matching the entire output sequence (marked with * in Fig. 1B-i). Notably,
participants often generalized correctly to longer output sequences than seen during training
(72.5% correct; an example is shown as the last instruction in Fig. 1B-i), which is a type of
generalization that neural networks often struggle with (16, 42, 43). When deviating from
this algebraic standard, the responses were still highly non-random and suggestive of strong
inductive biases. Many errors involved “one-to-one” translations that mapped each input word
to exactly one output symbol, as if all words were primitives (24.4% of all errors; marked with
1-to-1 in Fig. 1B-i). Other errors involved misapplying a function that requires reversing the
order of its input arguments (function 3 or “kiki” in Fig. 1), suggesting an “iconic concatenation”
bias for maintaining the order of the input words in the order of the output symbols (23.3% of
all errors involving function 3 followed this pattern; marked with IC in Fig. 1B-i). Beyond this
task, these response patterns can be compared to biases in language acquisition more generally;
indeed, forms of one-to-one (44,45) and iconic concatenation (46–48) are widely attested in
natural language.

These inductive biases were evaluated more directly through an open-ended instruction
task. Different participants were asked to make plausible guesses regarding the outputs of 7
novel instructions and how they relate to one another (responding to “fep fep” or “zup fep”
with a series of colored circles), without seeing any input/output examples to influence their
responses (see Fig. 2 for full task; Supplement for more details). Despite the unconstrained
nature of the test, people’s responses were highly structured and confirm the previous two
inductive biases. People’s responses also followed a third bias related to mutual exclusivity
(ME) which encourages assigning unique meanings to unique words (44,45). Reflecting the
strong influence of the biases, the majority of participants (17 of 29; 58.6%) responded with a
pattern analogous to that in Fig. 2 (leftmost column in A and B), which is perfectly consistent
with all three inductive biases. Across all of the responses, X of 29 participants followed

2

Support inputs/outputs

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

Human responses
dax blicket zup

*

1-to-1

1-to-1

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 1/3

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●
●●

●●● ●●
●● ●●
●●● ●●
●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●●

Filename net_rbn++_3layer_rep1.tar

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

yellow after red (78.2%) yellow after red (7.3%)

yellow after red (4.5%) yellow after red (4.5%)

yellow after red (2.7%) yellow after red (0.9%)

yellow after red (0.9%) yellow after red (0.9%)

green after yellow (83.6%) green after yellow (5.5%)

green after yellow (4.5%) green after yellow (1.8%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%)

yellow thrice (92.8%) yellow thrice (1.6%)

yellow thrice (1.6%) yellow thrice (1.6%)

yellow thrice (0.8%) yellow thrice (0.8%)

yellow thrice (0.8%)

red surround yellow (83.3%) red surround yellow (5.0%)

red surround yellow (4.2%) red surround yellow (3.3%)

red surround yellow (2.5%) red surround yellow (0.8%)

red surround yellow (0.8%)

green after yellow thrice (85.0%) green after yellow thrice (2.0%)

green after yellow thrice (2.0%) green after yellow thrice (2.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 1/3

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●
●●

●●● ●●
●● ●●
●●● ●●
●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●●

Filename net_rbn++_3layer_rep1.tar

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

yellow after red (78.2%) yellow after red (7.3%)

yellow after red (4.5%) yellow after red (4.5%)

yellow after red (2.7%) yellow after red (0.9%)

yellow after red (0.9%) yellow after red (0.9%)

green after yellow (83.6%) green after yellow (5.5%)

green after yellow (4.5%) green after yellow (1.8%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%)

yellow thrice (92.8%) yellow thrice (1.6%)

yellow thrice (1.6%) yellow thrice (1.6%)

yellow thrice (0.8%) yellow thrice (0.8%)

yellow thrice (0.8%)

red surround yellow (83.3%) red surround yellow (5.0%)

red surround yellow (4.2%) red surround yellow (3.3%)

red surround yellow (2.5%) red surround yellow (0.8%)

red surround yellow (0.8%)

green after yellow thrice (85.0%) green after yellow thrice (2.0%)

green after yellow thrice (2.0%) green after yellow thrice (2.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 1/3

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●
●●

●●● ●●
●● ●●
●●● ●●
●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●●

Filename net_rbn++_3layer_rep1.tar

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

yellow after red (78.2%) yellow after red (7.3%)

yellow after red (4.5%) yellow after red (4.5%)

yellow after red (2.7%) yellow after red (0.9%)

yellow after red (0.9%) yellow after red (0.9%)

green after yellow (83.6%) green after yellow (5.5%)

green after yellow (4.5%) green after yellow (1.8%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%)

yellow thrice (92.8%) yellow thrice (1.6%)

yellow thrice (1.6%) yellow thrice (1.6%)

yellow thrice (0.8%) yellow thrice (0.8%)

yellow thrice (0.8%)

red surround yellow (83.3%) red surround yellow (5.0%)

red surround yellow (4.2%) red surround yellow (3.3%)

red surround yellow (2.5%) red surround yellow (0.8%)

red surround yellow (0.8%)

green after yellow thrice (85.0%) green after yellow thrice (2.0%)

green after yellow thrice (2.0%) green after yellow thrice (2.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 1/3

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●
●●

●●● ●●
●● ●●
●●● ●●
●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●●

Filename net_rbn++_3layer_rep1.tar

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

yellow after red (78.2%) yellow after red (7.3%)

yellow after red (4.5%) yellow after red (4.5%)

yellow after red (2.7%) yellow after red (0.9%)

yellow after red (0.9%) yellow after red (0.9%)

green after yellow (83.6%) green after yellow (5.5%)

green after yellow (4.5%) green after yellow (1.8%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%)

yellow thrice (92.8%) yellow thrice (1.6%)

yellow thrice (1.6%) yellow thrice (1.6%)

yellow thrice (0.8%) yellow thrice (0.8%)

yellow thrice (0.8%)

red surround yellow (83.3%) red surround yellow (5.0%)

red surround yellow (4.2%) red surround yellow (3.3%)

red surround yellow (2.5%) red surround yellow (0.8%)

red surround yellow (0.8%)

green after yellow thrice (85.0%) green after yellow thrice (2.0%)

green after yellow thrice (2.0%) green after yellow thrice (2.0%)

*

1-to-11-to-1

dax blicket zup

Query

BIML responses

Comparing people and BIML on few-shot
instruction learning

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 1/3

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●
●●

●●● ●●
●● ●●
●●● ●●
●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●●

Filename net_rbn++_3layer_rep1.tar

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

yellow after red (78.2%) yellow after red (7.3%)

yellow after red (4.5%) yellow after red (4.5%)

yellow after red (2.7%) yellow after red (0.9%)

yellow after red (0.9%) yellow after red (0.9%)

green after yellow (83.6%) green after yellow (5.5%)

green after yellow (4.5%) green after yellow (1.8%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%)

yellow thrice (92.8%) yellow thrice (1.6%)

yellow thrice (1.6%) yellow thrice (1.6%)

yellow thrice (0.8%) yellow thrice (0.8%)

yellow thrice (0.8%)

red surround yellow (83.3%) red surround yellow (5.0%)

red surround yellow (4.2%) red surround yellow (3.3%)

red surround yellow (2.5%) red surround yellow (0.8%)

red surround yellow (0.8%)

green after yellow thrice (85.0%) green after yellow thrice (2.0%)

green after yellow thrice (2.0%) green after yellow thrice (2.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 1/3

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●
●●

●●● ●●
●● ●●
●●● ●●
●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●●

Filename net_rbn++_3layer_rep1.tar

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

yellow after red (78.2%) yellow after red (7.3%)

yellow after red (4.5%) yellow after red (4.5%)

yellow after red (2.7%) yellow after red (0.9%)

yellow after red (0.9%) yellow after red (0.9%)

green after yellow (83.6%) green after yellow (5.5%)

green after yellow (4.5%) green after yellow (1.8%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%)

yellow thrice (92.8%) yellow thrice (1.6%)

yellow thrice (1.6%) yellow thrice (1.6%)

yellow thrice (0.8%) yellow thrice (0.8%)

yellow thrice (0.8%)

red surround yellow (83.3%) red surround yellow (5.0%)

red surround yellow (4.2%) red surround yellow (3.3%)

red surround yellow (2.5%) red surround yellow (0.8%)

red surround yellow (0.8%)

green after yellow thrice (85.0%) green after yellow thrice (2.0%)

green after yellow thrice (2.0%) green after yellow thrice (2.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 1/3

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●
●●

●●● ●●
●● ●●
●●● ●●
●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●●

Filename net_rbn++_3layer_rep1.tar

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

yellow after red (78.2%) yellow after red (7.3%)

yellow after red (4.5%) yellow after red (4.5%)

yellow after red (2.7%) yellow after red (0.9%)

yellow after red (0.9%) yellow after red (0.9%)

green after yellow (83.6%) green after yellow (5.5%)

green after yellow (4.5%) green after yellow (1.8%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%)

yellow thrice (92.8%) yellow thrice (1.6%)

yellow thrice (1.6%) yellow thrice (1.6%)

yellow thrice (0.8%) yellow thrice (0.8%)

yellow thrice (0.8%)

red surround yellow (83.3%) red surround yellow (5.0%)

red surround yellow (4.2%) red surround yellow (3.3%)

red surround yellow (2.5%) red surround yellow (0.8%)

red surround yellow (0.8%)

green after yellow thrice (85.0%) green after yellow thrice (2.0%)

green after yellow thrice (2.0%) green after yellow thrice (2.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 1/3

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●
●●

●●● ●●
●● ●●
●●● ●●
●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●●

Filename net_rbn++_3layer_rep1.tar

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

yellow after red (78.2%) yellow after red (7.3%)

yellow after red (4.5%) yellow after red (4.5%)

yellow after red (2.7%) yellow after red (0.9%)

yellow after red (0.9%) yellow after red (0.9%)

green after yellow (83.6%) green after yellow (5.5%)

green after yellow (4.5%) green after yellow (1.8%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%)

yellow thrice (92.8%) yellow thrice (1.6%)

yellow thrice (1.6%) yellow thrice (1.6%)

yellow thrice (0.8%) yellow thrice (0.8%)

yellow thrice (0.8%)

red surround yellow (83.3%) red surround yellow (5.0%)

red surround yellow (4.2%) red surround yellow (3.3%)

red surround yellow (2.5%) red surround yellow (0.8%)

red surround yellow (0.8%)

green after yellow thrice (85.0%) green after yellow thrice (2.0%)

green after yellow thrice (2.0%) green after yellow thrice (2.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 2/3

●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●●●
●●●●●●

●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●
●●●●● ●●●●
●●●●● ●●●●●
●●●●● ●●●●●
●●●● ●●●●●
●●●● ●●●●●
●●●● ●●●●●
●●●●● ●●●●●
●●●● ●●●●

●●●●●● ●●●●●
●●

●●●●●●
●●

●●●●●
●

●●●●●● ●●●●●

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%)

yellow thrice after blue (83.0%) yellow thrice after blue (3.0%)

yellow thrice after blue (3.0%) yellow thrice after blue (3.0%)

yellow thrice after blue (2.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%)

yellow surround blue (86.7%) yellow surround blue (5.0%)

yellow surround blue (4.2%) yellow surround blue (1.7%)

yellow surround blue (0.8%) yellow surround blue (0.8%)

yellow surround blue (0.8%)

blue after green surround yellow (74.0%) blue after green surround yellow (5.0%)

blue after green surround yellow (4.0%) blue after green surround yellow (2.0%)

blue after green surround yellow (2.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

yellow surround yellow after yellow
thrice (79.0%) yellow surround yellow after

yellow thrice (6.0%)

yellow surround yellow after yellow
thrice (5.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice

(1.0%) yellow surround yellow after
yellow thrice

(1.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 2/3

●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●●●
●●●●●●

●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●
●●●●● ●●●●
●●●●● ●●●●●
●●●●● ●●●●●
●●●● ●●●●●
●●●● ●●●●●
●●●● ●●●●●
●●●●● ●●●●●
●●●● ●●●●

●●●●●● ●●●●●
●●

●●●●●●
●●

●●●●●
●

●●●●●● ●●●●●

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%)

yellow thrice after blue (83.0%) yellow thrice after blue (3.0%)

yellow thrice after blue (3.0%) yellow thrice after blue (3.0%)

yellow thrice after blue (2.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%)

yellow surround blue (86.7%) yellow surround blue (5.0%)

yellow surround blue (4.2%) yellow surround blue (1.7%)

yellow surround blue (0.8%) yellow surround blue (0.8%)

yellow surround blue (0.8%)

blue after green surround yellow (74.0%) blue after green surround yellow (5.0%)

blue after green surround yellow (4.0%) blue after green surround yellow (2.0%)

blue after green surround yellow (2.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

yellow surround yellow after yellow
thrice (79.0%) yellow surround yellow after

yellow thrice (6.0%)

yellow surround yellow after yellow
thrice (5.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice

(1.0%) yellow surround yellow after
yellow thrice

(1.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 2/3

●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●●●
●●●●●●

●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●
●●●●● ●●●●
●●●●● ●●●●●
●●●●● ●●●●●
●●●● ●●●●●
●●●● ●●●●●
●●●● ●●●●●
●●●●● ●●●●●
●●●● ●●●●

●●●●●● ●●●●●
●●

●●●●●●
●●

●●●●●
●

●●●●●● ●●●●●

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%)

yellow thrice after blue (83.0%) yellow thrice after blue (3.0%)

yellow thrice after blue (3.0%) yellow thrice after blue (3.0%)

yellow thrice after blue (2.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%)

yellow surround blue (86.7%) yellow surround blue (5.0%)

yellow surround blue (4.2%) yellow surround blue (1.7%)

yellow surround blue (0.8%) yellow surround blue (0.8%)

yellow surround blue (0.8%)

blue after green surround yellow (74.0%) blue after green surround yellow (5.0%)

blue after green surround yellow (4.0%) blue after green surround yellow (2.0%)

blue after green surround yellow (2.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

yellow surround yellow after yellow
thrice (79.0%) yellow surround yellow after

yellow thrice (6.0%)

yellow surround yellow after yellow
thrice (5.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice

(1.0%) yellow surround yellow after
yellow thrice

(1.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 2/3

●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●●●
●●●●●●

●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●
●●●●● ●●●●
●●●●● ●●●●●
●●●●● ●●●●●
●●●● ●●●●●
●●●● ●●●●●
●●●● ●●●●●
●●●●● ●●●●●
●●●● ●●●●

●●●●●● ●●●●●
●●

●●●●●●
●●

●●●●●
●

●●●●●● ●●●●●

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%)

yellow thrice after blue (83.0%) yellow thrice after blue (3.0%)

yellow thrice after blue (3.0%) yellow thrice after blue (3.0%)

yellow thrice after blue (2.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%)

yellow surround blue (86.7%) yellow surround blue (5.0%)

yellow surround blue (4.2%) yellow surround blue (1.7%)

yellow surround blue (0.8%) yellow surround blue (0.8%)

yellow surround blue (0.8%)

blue after green surround yellow (74.0%) blue after green surround yellow (5.0%)

blue after green surround yellow (4.0%) blue after green surround yellow (2.0%)

blue after green surround yellow (2.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

yellow surround yellow after yellow
thrice (79.0%) yellow surround yellow after

yellow thrice (6.0%)

yellow surround yellow after yellow
thrice (5.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice

(1.0%) yellow surround yellow after
yellow thrice

(1.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 3/3

●

●●●●●● ●●●●●
●

●●●●●● ●●●●●
●

●●●●●● ●●●●●
●

●●●●●●

●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●

●●●●●● ●●●●●●
●●

●●●●●●●
● ●●●●●●

●●●●●● ●●●●●●

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%)

yellow surround green after red
thrice (76.0%) yellow surround green after red

thrice (9.0%)

yellow surround green after red
thrice (2.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 3/3

●

●●●●●● ●●●●●
●

●●●●●● ●●●●●
●

●●●●●● ●●●●●
●

●●●●●●

●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●

●●●●●● ●●●●●●
●●

●●●●●●●
● ●●●●●●

●●●●●● ●●●●●●

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%)

yellow surround green after red
thrice (76.0%) yellow surround green after red

thrice (9.0%)

yellow surround green after red
thrice (2.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 3/3

●

●●●●●● ●●●●●
●

●●●●●● ●●●●●
●

●●●●●● ●●●●●
●

●●●●●●

●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●

●●●●●● ●●●●●●
●●

●●●●●●●
● ●●●●●●

●●●●●● ●●●●●●

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%)

yellow surround green after red
thrice (76.0%) yellow surround green after red

thrice (9.0%)

yellow surround green after red
thrice (2.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 3/3

●

●●●●●● ●●●●●
●

●●●●●● ●●●●●
●

●●●●●● ●●●●●
●

●●●●●●

●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●

●●●●●● ●●●●●●
●●

●●●●●●●
● ●●●●●●

●●●●●● ●●●●●●

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%)

yellow surround green after red
thrice (76.0%) yellow surround green after red

thrice (9.0%)

yellow surround green after red
thrice (2.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 2/2

●●●
●●● ●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●●● ●●●●
●●●● ●●●●
●●●●

●●●●●●
●●●●●● ●●●●
●●●●● ●●●●

●●●●●●
●●●●●● ●●●●
●●●●●● ●●●●●
●●●●●● ●●●●
●●●●

INPUT: yellow surround blue; OUTPUT: (target)

yellow surround blue (19) yellow surround blue (1)

yellow surround blue (1) yellow surround blue (1)

yellow surround blue (1) yellow surround blue (1)

INPUT: blue after green surround yellow; OUTPUT: (target)

blue after green surround yellow (13) blue after green surround yellow (2)

blue after green surround yellow (1) blue after green surround yellow (1)

blue after green surround yellow (1) blue after green surround yellow (1)

blue after green surround yellow (1)

INPUT: yellow surround yellow after yellow thrice; OUTPUT: (target)

yellow surround yellow after yellow thrice (15) yellow surround yellow after yellow thrice (3)

yellow surround yellow after yellow thrice (1) yellow surround yellow after yellow thrice (1)

INPUT: yellow surround green after red thrice; OUTPUT: (target)

yellow surround green after red thrice (14) yellow surround green after red thrice (1)

yellow surround green after red thrice (1) yellow surround green after red thrice (1)

yellow surround green after red thrice (1) yellow surround green after red thrice (1)

yellow surround green after red thrice (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 2/2

●●●
●●● ●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●●● ●●●●
●●●● ●●●●
●●●●

●●●●●●
●●●●●● ●●●●
●●●●● ●●●●

●●●●●●
●●●●●● ●●●●
●●●●●● ●●●●●
●●●●●● ●●●●
●●●●

INPUT: yellow surround blue; OUTPUT: (target)

yellow surround blue (19) yellow surround blue (1)

yellow surround blue (1) yellow surround blue (1)

yellow surround blue (1) yellow surround blue (1)

INPUT: blue after green surround yellow; OUTPUT: (target)

blue after green surround yellow (13) blue after green surround yellow (2)

blue after green surround yellow (1) blue after green surround yellow (1)

blue after green surround yellow (1) blue after green surround yellow (1)

blue after green surround yellow (1)

INPUT: yellow surround yellow after yellow thrice; OUTPUT: (target)

yellow surround yellow after yellow thrice (15) yellow surround yellow after yellow thrice (3)

yellow surround yellow after yellow thrice (1) yellow surround yellow after yellow thrice (1)

INPUT: yellow surround green after red thrice; OUTPUT: (target)

yellow surround green after red thrice (14) yellow surround green after red thrice (1)

yellow surround green after red thrice (1) yellow surround green after red thrice (1)

yellow surround green after red thrice (1) yellow surround green after red thrice (1)

yellow surround green after red thrice (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 2/2

●●●
●●● ●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●●● ●●●●
●●●● ●●●●
●●●●

●●●●●●
●●●●●● ●●●●
●●●●● ●●●●

●●●●●●
●●●●●● ●●●●
●●●●●● ●●●●●
●●●●●● ●●●●
●●●●

INPUT: yellow surround blue; OUTPUT: (target)

yellow surround blue (19) yellow surround blue (1)

yellow surround blue (1) yellow surround blue (1)

yellow surround blue (1) yellow surround blue (1)

INPUT: blue after green surround yellow; OUTPUT: (target)

blue after green surround yellow (13) blue after green surround yellow (2)

blue after green surround yellow (1) blue after green surround yellow (1)

blue after green surround yellow (1) blue after green surround yellow (1)

blue after green surround yellow (1)

INPUT: yellow surround yellow after yellow thrice; OUTPUT: (target)

yellow surround yellow after yellow thrice (15) yellow surround yellow after yellow thrice (3)

yellow surround yellow after yellow thrice (1) yellow surround yellow after yellow thrice (1)

INPUT: yellow surround green after red thrice; OUTPUT: (target)

yellow surround green after red thrice (14) yellow surround green after red thrice (1)

yellow surround green after red thrice (1) yellow surround green after red thrice (1)

yellow surround green after red thrice (1) yellow surround green after red thrice (1)

yellow surround green after red thrice (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 2/2

●●●
●●● ●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●●● ●●●●
●●●● ●●●●
●●●●

●●●●●●
●●●●●● ●●●●
●●●●● ●●●●

●●●●●●
●●●●●● ●●●●
●●●●●● ●●●●●
●●●●●● ●●●●
●●●●

INPUT: yellow surround blue; OUTPUT: (target)

yellow surround blue (19) yellow surround blue (1)

yellow surround blue (1) yellow surround blue (1)

yellow surround blue (1) yellow surround blue (1)

INPUT: blue after green surround yellow; OUTPUT: (target)

blue after green surround yellow (13) blue after green surround yellow (2)

blue after green surround yellow (1) blue after green surround yellow (1)

blue after green surround yellow (1) blue after green surround yellow (1)

blue after green surround yellow (1)

INPUT: yellow surround yellow after yellow thrice; OUTPUT: (target)

yellow surround yellow after yellow thrice (15) yellow surround yellow after yellow thrice (3)

yellow surround yellow after yellow thrice (1) yellow surround yellow after yellow thrice (1)

INPUT: yellow surround green after red thrice; OUTPUT: (target)

yellow surround green after red thrice (14) yellow surround green after red thrice (1)

yellow surround green after red thrice (1) yellow surround green after red thrice (1)

yellow surround green after red thrice (1) yellow surround green after red thrice (1)

yellow surround green after red thrice (1)

zup fep kiki lug

zup blicket wif kiki dax fep

i) Human responses ii) BIML responses
dax blicket zup

* *

* *

*

1-to-11-to-1

IC

*

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 1/3

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●
●●

●●● ●●
●● ●●
●●● ●●
●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●●

Filename net_rbn++_3layer_rep1.tar

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

yellow after red (78.2%) yellow after red (7.3%)

yellow after red (4.5%) yellow after red (4.5%)

yellow after red (2.7%) yellow after red (0.9%)

yellow after red (0.9%) yellow after red (0.9%)

green after yellow (83.6%) green after yellow (5.5%)

green after yellow (4.5%) green after yellow (1.8%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%)

yellow thrice (92.8%) yellow thrice (1.6%)

yellow thrice (1.6%) yellow thrice (1.6%)

yellow thrice (0.8%) yellow thrice (0.8%)

yellow thrice (0.8%)

red surround yellow (83.3%) red surround yellow (5.0%)

red surround yellow (4.2%) red surround yellow (3.3%)

red surround yellow (2.5%) red surround yellow (0.8%)

red surround yellow (0.8%)

green after yellow thrice (85.0%) green after yellow thrice (2.0%)

green after yellow thrice (2.0%) green after yellow thrice (2.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 1/3

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●
●●

●●● ●●
●● ●●
●●● ●●
●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●●

Filename net_rbn++_3layer_rep1.tar

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

yellow after red (78.2%) yellow after red (7.3%)

yellow after red (4.5%) yellow after red (4.5%)

yellow after red (2.7%) yellow after red (0.9%)

yellow after red (0.9%) yellow after red (0.9%)

green after yellow (83.6%) green after yellow (5.5%)

green after yellow (4.5%) green after yellow (1.8%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%)

yellow thrice (92.8%) yellow thrice (1.6%)

yellow thrice (1.6%) yellow thrice (1.6%)

yellow thrice (0.8%) yellow thrice (0.8%)

yellow thrice (0.8%)

red surround yellow (83.3%) red surround yellow (5.0%)

red surround yellow (4.2%) red surround yellow (3.3%)

red surround yellow (2.5%) red surround yellow (0.8%)

red surround yellow (0.8%)

green after yellow thrice (85.0%) green after yellow thrice (2.0%)

green after yellow thrice (2.0%) green after yellow thrice (2.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 1/3

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●
●●

●●● ●●
●● ●●
●●● ●●
●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●●

Filename net_rbn++_3layer_rep1.tar

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

yellow after red (78.2%) yellow after red (7.3%)

yellow after red (4.5%) yellow after red (4.5%)

yellow after red (2.7%) yellow after red (0.9%)

yellow after red (0.9%) yellow after red (0.9%)

green after yellow (83.6%) green after yellow (5.5%)

green after yellow (4.5%) green after yellow (1.8%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%)

yellow thrice (92.8%) yellow thrice (1.6%)

yellow thrice (1.6%) yellow thrice (1.6%)

yellow thrice (0.8%) yellow thrice (0.8%)

yellow thrice (0.8%)

red surround yellow (83.3%) red surround yellow (5.0%)

red surround yellow (4.2%) red surround yellow (3.3%)

red surround yellow (2.5%) red surround yellow (0.8%)

red surround yellow (0.8%)

green after yellow thrice (85.0%) green after yellow thrice (2.0%)

green after yellow thrice (2.0%) green after yellow thrice (2.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 1/3

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●
●●

●●● ●●
●● ●●
●●● ●●
●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●●

Filename net_rbn++_3layer_rep1.tar

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

yellow after red (78.2%) yellow after red (7.3%)

yellow after red (4.5%) yellow after red (4.5%)

yellow after red (2.7%) yellow after red (0.9%)

yellow after red (0.9%) yellow after red (0.9%)

green after yellow (83.6%) green after yellow (5.5%)

green after yellow (4.5%) green after yellow (1.8%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%)

yellow thrice (92.8%) yellow thrice (1.6%)

yellow thrice (1.6%) yellow thrice (1.6%)

yellow thrice (0.8%) yellow thrice (0.8%)

yellow thrice (0.8%)

red surround yellow (83.3%) red surround yellow (5.0%)

red surround yellow (4.2%) red surround yellow (3.3%)

red surround yellow (2.5%) red surround yellow (0.8%)

red surround yellow (0.8%)

green after yellow thrice (85.0%) green after yellow thrice (2.0%)

green after yellow thrice (2.0%) green after yellow thrice (2.0%)

IC IC

1-to-11-to-1 1-to-1

zup kiki dax zup kiki dax

1-to-1

IC IC

IC

1-to-1

dax blicket zup

zup fep kiki lug

zup blicket wif kiki dax fep

**

B) Test instructionsA) Study instructions

Figure 1: Few-shot instruction learning task involves generating sequences of abstract outputs (colored

circles) in response to instructions (pseudo-words). Based on the study instructions (A; headings were

not provided to participants), humans and the BIML model executed test instructions (B; 4 of 10

shown). The four most frequent responses are shown for people (marked with count in parentheses)

and the BIML model (marked with percentage of samples). Superscripts indicate the following: * is

the algebraic answer, 1-to-1 is an one-to-one error, and IC is an iconic concatenation error.

of grammaticality are not needed. Instead, participants generate sequences of symbols in
response to sequences of words, allowing computational systems to directly model the resulting
data by building upon the powerful sequence-to-sequence (seq2seq) toolkit from machine
learning (39,40). All experiments were run on Amazon Mechanical Turk and psiTurk (41).

Systematic generalization was evaluated through a few-shot learning paradigm. As il-
lustrated in Fig. 1, participants were provided with a curriculum of 14 study instructions
(input/output pairs) and asked to produce outputs for 10 test instructions. The study instruc-
tions were consistent with an underlying interpretation grammar, which derives outputs from
inputs through a set of compositional re-write rules (see Supplement). Evaluated against this
algebraic standard, the average performance across participants was 84.3% correct (N = 25)
for exactly matching the entire output sequence (marked with * in Fig. 1B-i). Notably,
participants often generalized correctly to longer output sequences than seen during training
(72.5% correct; an example is shown as the last instruction in Fig. 1B-i), which is a type of
generalization that neural networks often struggle with (16, 42, 43). When deviating from
this algebraic standard, the responses were still highly non-random and suggestive of strong
inductive biases. Many errors involved “one-to-one” translations that mapped each input word
to exactly one output symbol, as if all words were primitives (24.4% of all errors; marked with
1-to-1 in Fig. 1B-i). Other errors involved misapplying a function that requires reversing the
order of its input arguments (function 3 or “kiki” in Fig. 1), suggesting an “iconic concatenation”
bias for maintaining the order of the input words in the order of the output symbols (23.3% of
all errors involving function 3 followed this pattern; marked with IC in Fig. 1B-i). Beyond this
task, these response patterns can be compared to biases in language acquisition more generally;
indeed, forms of one-to-one (44,45) and iconic concatenation (46–48) are widely attested in
natural language.

These inductive biases were evaluated more directly through an open-ended instruction
task. Different participants were asked to make plausible guesses regarding the outputs of 7
novel instructions and how they relate to one another (responding to “fep fep” or “zup fep”
with a series of colored circles), without seeing any input/output examples to influence their
responses (see Fig. 2 for full task; Supplement for more details). Despite the unconstrained
nature of the test, people’s responses were highly structured and confirm the previous two
inductive biases. People’s responses also followed a third bias related to mutual exclusivity
(ME) which encourages assigning unique meanings to unique words (44,45). Reflecting the
strong influence of the biases, the majority of participants (17 of 29; 58.6%) responded with a
pattern analogous to that in Fig. 2 (leftmost column in A and B), which is perfectly consistent
with all three inductive biases. Across all of the responses, X of 29 participants followed

2

Support inputs/outputs

Human responses

Query

BIML responses

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

IC

1-to-1

zup kiki dax
*

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 1/3

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●
●●

●●● ●●
●● ●●
●●● ●●
●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●●

Filename net_rbn++_3layer_rep1.tar

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

yellow after red (78.2%) yellow after red (7.3%)

yellow after red (4.5%) yellow after red (4.5%)

yellow after red (2.7%) yellow after red (0.9%)

yellow after red (0.9%) yellow after red (0.9%)

green after yellow (83.6%) green after yellow (5.5%)

green after yellow (4.5%) green after yellow (1.8%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%)

yellow thrice (92.8%) yellow thrice (1.6%)

yellow thrice (1.6%) yellow thrice (1.6%)

yellow thrice (0.8%) yellow thrice (0.8%)

yellow thrice (0.8%)

red surround yellow (83.3%) red surround yellow (5.0%)

red surround yellow (4.2%) red surround yellow (3.3%)

red surround yellow (2.5%) red surround yellow (0.8%)

red surround yellow (0.8%)

green after yellow thrice (85.0%) green after yellow thrice (2.0%)

green after yellow thrice (2.0%) green after yellow thrice (2.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 1/3

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●
●●

●●● ●●
●● ●●
●●● ●●
●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●●

Filename net_rbn++_3layer_rep1.tar

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

yellow after red (78.2%) yellow after red (7.3%)

yellow after red (4.5%) yellow after red (4.5%)

yellow after red (2.7%) yellow after red (0.9%)

yellow after red (0.9%) yellow after red (0.9%)

green after yellow (83.6%) green after yellow (5.5%)

green after yellow (4.5%) green after yellow (1.8%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%)

yellow thrice (92.8%) yellow thrice (1.6%)

yellow thrice (1.6%) yellow thrice (1.6%)

yellow thrice (0.8%) yellow thrice (0.8%)

yellow thrice (0.8%)

red surround yellow (83.3%) red surround yellow (5.0%)

red surround yellow (4.2%) red surround yellow (3.3%)

red surround yellow (2.5%) red surround yellow (0.8%)

red surround yellow (0.8%)

green after yellow thrice (85.0%) green after yellow thrice (2.0%)

green after yellow thrice (2.0%) green after yellow thrice (2.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 1/3

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●
●●

●●● ●●
●● ●●
●●● ●●
●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●●

Filename net_rbn++_3layer_rep1.tar

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

yellow after red (78.2%) yellow after red (7.3%)

yellow after red (4.5%) yellow after red (4.5%)

yellow after red (2.7%) yellow after red (0.9%)

yellow after red (0.9%) yellow after red (0.9%)

green after yellow (83.6%) green after yellow (5.5%)

green after yellow (4.5%) green after yellow (1.8%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%)

yellow thrice (92.8%) yellow thrice (1.6%)

yellow thrice (1.6%) yellow thrice (1.6%)

yellow thrice (0.8%) yellow thrice (0.8%)

yellow thrice (0.8%)

red surround yellow (83.3%) red surround yellow (5.0%)

red surround yellow (4.2%) red surround yellow (3.3%)

red surround yellow (2.5%) red surround yellow (0.8%)

red surround yellow (0.8%)

green after yellow thrice (85.0%) green after yellow thrice (2.0%)

green after yellow thrice (2.0%) green after yellow thrice (2.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 1/3

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●
●●

●●● ●●
●● ●●
●●● ●●
●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●●

Filename net_rbn++_3layer_rep1.tar

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

yellow after red (78.2%) yellow after red (7.3%)

yellow after red (4.5%) yellow after red (4.5%)

yellow after red (2.7%) yellow after red (0.9%)

yellow after red (0.9%) yellow after red (0.9%)

green after yellow (83.6%) green after yellow (5.5%)

green after yellow (4.5%) green after yellow (1.8%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%)

yellow thrice (92.8%) yellow thrice (1.6%)

yellow thrice (1.6%) yellow thrice (1.6%)

yellow thrice (0.8%) yellow thrice (0.8%)

yellow thrice (0.8%)

red surround yellow (83.3%) red surround yellow (5.0%)

red surround yellow (4.2%) red surround yellow (3.3%)

red surround yellow (2.5%) red surround yellow (0.8%)

red surround yellow (0.8%)

green after yellow thrice (85.0%) green after yellow thrice (2.0%)

green after yellow thrice (2.0%) green after yellow thrice (2.0%)

IC

1-to-11-to-1

zup kiki dax
*

Comparing people and BIML on few-shot
instruction learning

● ●
● ●

Training examples

dax wif

lug zup

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:56 AM

Primitives

●●●
●●●

Training examples

lug fep

dax fep

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 1

●●
●●

Training examples

lug kiki wif

dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:00 AM

Function 3

●●●
●●●

Training examples

lug blicket wif

wif blicket dax

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 10:02 AM

Function 2

●●●●
●●●●
●●●●
●●●●

Training examples

lug fep kiki wif

wif kiki dax blicket lug

lug kiki wif fep

wif blicket dax kiki lug

Test examples

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-v2/study_patterns.html

1 of 1 12/18/18, 9:59 AM

Function compositions

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 1/3

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●
●●

●●● ●●
●● ●●
●●● ●●
●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●●

Filename net_rbn++_3layer_rep1.tar

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

yellow after red (78.2%) yellow after red (7.3%)

yellow after red (4.5%) yellow after red (4.5%)

yellow after red (2.7%) yellow after red (0.9%)

yellow after red (0.9%) yellow after red (0.9%)

green after yellow (83.6%) green after yellow (5.5%)

green after yellow (4.5%) green after yellow (1.8%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%)

yellow thrice (92.8%) yellow thrice (1.6%)

yellow thrice (1.6%) yellow thrice (1.6%)

yellow thrice (0.8%) yellow thrice (0.8%)

yellow thrice (0.8%)

red surround yellow (83.3%) red surround yellow (5.0%)

red surround yellow (4.2%) red surround yellow (3.3%)

red surround yellow (2.5%) red surround yellow (0.8%)

red surround yellow (0.8%)

green after yellow thrice (85.0%) green after yellow thrice (2.0%)

green after yellow thrice (2.0%) green after yellow thrice (2.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 1/3

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●
●●

●●● ●●
●● ●●
●●● ●●
●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●●

Filename net_rbn++_3layer_rep1.tar

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

yellow after red (78.2%) yellow after red (7.3%)

yellow after red (4.5%) yellow after red (4.5%)

yellow after red (2.7%) yellow after red (0.9%)

yellow after red (0.9%) yellow after red (0.9%)

green after yellow (83.6%) green after yellow (5.5%)

green after yellow (4.5%) green after yellow (1.8%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%)

yellow thrice (92.8%) yellow thrice (1.6%)

yellow thrice (1.6%) yellow thrice (1.6%)

yellow thrice (0.8%) yellow thrice (0.8%)

yellow thrice (0.8%)

red surround yellow (83.3%) red surround yellow (5.0%)

red surround yellow (4.2%) red surround yellow (3.3%)

red surround yellow (2.5%) red surround yellow (0.8%)

red surround yellow (0.8%)

green after yellow thrice (85.0%) green after yellow thrice (2.0%)

green after yellow thrice (2.0%) green after yellow thrice (2.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 1/3

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●
●●

●●● ●●
●● ●●
●●● ●●
●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●●

Filename net_rbn++_3layer_rep1.tar

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

yellow after red (78.2%) yellow after red (7.3%)

yellow after red (4.5%) yellow after red (4.5%)

yellow after red (2.7%) yellow after red (0.9%)

yellow after red (0.9%) yellow after red (0.9%)

green after yellow (83.6%) green after yellow (5.5%)

green after yellow (4.5%) green after yellow (1.8%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%)

yellow thrice (92.8%) yellow thrice (1.6%)

yellow thrice (1.6%) yellow thrice (1.6%)

yellow thrice (0.8%) yellow thrice (0.8%)

yellow thrice (0.8%)

red surround yellow (83.3%) red surround yellow (5.0%)

red surround yellow (4.2%) red surround yellow (3.3%)

red surround yellow (2.5%) red surround yellow (0.8%)

red surround yellow (0.8%)

green after yellow thrice (85.0%) green after yellow thrice (2.0%)

green after yellow thrice (2.0%) green after yellow thrice (2.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 1/3

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●
●●

●●● ●●
●● ●●
●●● ●●
●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●●

Filename net_rbn++_3layer_rep1.tar

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

yellow after red (78.2%) yellow after red (7.3%)

yellow after red (4.5%) yellow after red (4.5%)

yellow after red (2.7%) yellow after red (0.9%)

yellow after red (0.9%) yellow after red (0.9%)

green after yellow (83.6%) green after yellow (5.5%)

green after yellow (4.5%) green after yellow (1.8%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%)

yellow thrice (92.8%) yellow thrice (1.6%)

yellow thrice (1.6%) yellow thrice (1.6%)

yellow thrice (0.8%) yellow thrice (0.8%)

yellow thrice (0.8%)

red surround yellow (83.3%) red surround yellow (5.0%)

red surround yellow (4.2%) red surround yellow (3.3%)

red surround yellow (2.5%) red surround yellow (0.8%)

red surround yellow (0.8%)

green after yellow thrice (85.0%) green after yellow thrice (2.0%)

green after yellow thrice (2.0%) green after yellow thrice (2.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 2/3

●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●●●
●●●●●●

●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●
●●●●● ●●●●
●●●●● ●●●●●
●●●●● ●●●●●
●●●● ●●●●●
●●●● ●●●●●
●●●● ●●●●●
●●●●● ●●●●●
●●●● ●●●●

●●●●●● ●●●●●
●●

●●●●●●
●●

●●●●●
●

●●●●●● ●●●●●

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%)

yellow thrice after blue (83.0%) yellow thrice after blue (3.0%)

yellow thrice after blue (3.0%) yellow thrice after blue (3.0%)

yellow thrice after blue (2.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%)

yellow surround blue (86.7%) yellow surround blue (5.0%)

yellow surround blue (4.2%) yellow surround blue (1.7%)

yellow surround blue (0.8%) yellow surround blue (0.8%)

yellow surround blue (0.8%)

blue after green surround yellow (74.0%) blue after green surround yellow (5.0%)

blue after green surround yellow (4.0%) blue after green surround yellow (2.0%)

blue after green surround yellow (2.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

yellow surround yellow after yellow
thrice (79.0%) yellow surround yellow after

yellow thrice (6.0%)

yellow surround yellow after yellow
thrice (5.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice

(1.0%) yellow surround yellow after
yellow thrice

(1.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 2/3

●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●●●
●●●●●●

●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●
●●●●● ●●●●
●●●●● ●●●●●
●●●●● ●●●●●
●●●● ●●●●●
●●●● ●●●●●
●●●● ●●●●●
●●●●● ●●●●●
●●●● ●●●●

●●●●●● ●●●●●
●●

●●●●●●
●●

●●●●●
●

●●●●●● ●●●●●

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%)

yellow thrice after blue (83.0%) yellow thrice after blue (3.0%)

yellow thrice after blue (3.0%) yellow thrice after blue (3.0%)

yellow thrice after blue (2.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%)

yellow surround blue (86.7%) yellow surround blue (5.0%)

yellow surround blue (4.2%) yellow surround blue (1.7%)

yellow surround blue (0.8%) yellow surround blue (0.8%)

yellow surround blue (0.8%)

blue after green surround yellow (74.0%) blue after green surround yellow (5.0%)

blue after green surround yellow (4.0%) blue after green surround yellow (2.0%)

blue after green surround yellow (2.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

yellow surround yellow after yellow
thrice (79.0%) yellow surround yellow after

yellow thrice (6.0%)

yellow surround yellow after yellow
thrice (5.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice

(1.0%) yellow surround yellow after
yellow thrice

(1.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 2/3

●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●●●
●●●●●●

●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●
●●●●● ●●●●
●●●●● ●●●●●
●●●●● ●●●●●
●●●● ●●●●●
●●●● ●●●●●
●●●● ●●●●●
●●●●● ●●●●●
●●●● ●●●●

●●●●●● ●●●●●
●●

●●●●●●
●●

●●●●●
●

●●●●●● ●●●●●

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%)

yellow thrice after blue (83.0%) yellow thrice after blue (3.0%)

yellow thrice after blue (3.0%) yellow thrice after blue (3.0%)

yellow thrice after blue (2.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%)

yellow surround blue (86.7%) yellow surround blue (5.0%)

yellow surround blue (4.2%) yellow surround blue (1.7%)

yellow surround blue (0.8%) yellow surround blue (0.8%)

yellow surround blue (0.8%)

blue after green surround yellow (74.0%) blue after green surround yellow (5.0%)

blue after green surround yellow (4.0%) blue after green surround yellow (2.0%)

blue after green surround yellow (2.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

yellow surround yellow after yellow
thrice (79.0%) yellow surround yellow after

yellow thrice (6.0%)

yellow surround yellow after yellow
thrice (5.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice

(1.0%) yellow surround yellow after
yellow thrice

(1.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 2/3

●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●●●
●●●●●●

●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●● ●●●●
●●●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●
●●●●● ●●●●
●●●●● ●●●●●
●●●●● ●●●●●
●●●● ●●●●●
●●●● ●●●●●
●●●● ●●●●●
●●●●● ●●●●●
●●●● ●●●●

●●●●●● ●●●●●
●●

●●●●●●
●●

●●●●●
●

●●●●●● ●●●●●

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%) green after yellow thrice (1.0%)

green after yellow thrice (1.0%)

yellow thrice after blue (83.0%) yellow thrice after blue (3.0%)

yellow thrice after blue (3.0%) yellow thrice after blue (3.0%)

yellow thrice after blue (2.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%) yellow thrice after blue (1.0%)

yellow thrice after blue (1.0%)

yellow surround blue (86.7%) yellow surround blue (5.0%)

yellow surround blue (4.2%) yellow surround blue (1.7%)

yellow surround blue (0.8%) yellow surround blue (0.8%)

yellow surround blue (0.8%)

blue after green surround yellow (74.0%) blue after green surround yellow (5.0%)

blue after green surround yellow (4.0%) blue after green surround yellow (2.0%)

blue after green surround yellow (2.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

blue after green surround yellow (1.0%) blue after green surround yellow (1.0%)

yellow surround yellow after yellow
thrice (79.0%) yellow surround yellow after

yellow thrice (6.0%)

yellow surround yellow after yellow
thrice (5.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice

(1.0%) yellow surround yellow after
yellow thrice

(1.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 3/3

●

●●●●●● ●●●●●
●

●●●●●● ●●●●●
●

●●●●●● ●●●●●
●

●●●●●●

●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●

●●●●●● ●●●●●●
●●

●●●●●●●
● ●●●●●●

●●●●●● ●●●●●●

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%)

yellow surround green after red
thrice (76.0%) yellow surround green after red

thrice (9.0%)

yellow surround green after red
thrice (2.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 3/3

●

●●●●●● ●●●●●
●

●●●●●● ●●●●●
●

●●●●●● ●●●●●
●

●●●●●●

●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●

●●●●●● ●●●●●●
●●

●●●●●●●
● ●●●●●●

●●●●●● ●●●●●●

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%)

yellow surround green after red
thrice (76.0%) yellow surround green after red

thrice (9.0%)

yellow surround green after red
thrice (2.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 3/3

●

●●●●●● ●●●●●
●

●●●●●● ●●●●●
●

●●●●●● ●●●●●
●

●●●●●●

●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●

●●●●●● ●●●●●●
●●

●●●●●●●
● ●●●●●●

●●●●●● ●●●●●●

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%)

yellow surround green after red
thrice (76.0%) yellow surround green after red

thrice (9.0%)

yellow surround green after red
thrice (2.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 3/3

●

●●●●●● ●●●●●
●

●●●●●● ●●●●●
●

●●●●●● ●●●●●
●

●●●●●●

●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●

●●●●●● ●●●●●●
●●

●●●●●●●
● ●●●●●●

●●●●●● ●●●●●●

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%)

yellow surround green after red
thrice (76.0%) yellow surround green after red

thrice (9.0%)

yellow surround green after red
thrice (2.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 2/2

●●●
●●● ●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●●● ●●●●
●●●● ●●●●
●●●●

●●●●●●
●●●●●● ●●●●
●●●●● ●●●●

●●●●●●
●●●●●● ●●●●
●●●●●● ●●●●●
●●●●●● ●●●●
●●●●

INPUT: yellow surround blue; OUTPUT: (target)

yellow surround blue (19) yellow surround blue (1)

yellow surround blue (1) yellow surround blue (1)

yellow surround blue (1) yellow surround blue (1)

INPUT: blue after green surround yellow; OUTPUT: (target)

blue after green surround yellow (13) blue after green surround yellow (2)

blue after green surround yellow (1) blue after green surround yellow (1)

blue after green surround yellow (1) blue after green surround yellow (1)

blue after green surround yellow (1)

INPUT: yellow surround yellow after yellow thrice; OUTPUT: (target)

yellow surround yellow after yellow thrice (15) yellow surround yellow after yellow thrice (3)

yellow surround yellow after yellow thrice (1) yellow surround yellow after yellow thrice (1)

INPUT: yellow surround green after red thrice; OUTPUT: (target)

yellow surround green after red thrice (14) yellow surround green after red thrice (1)

yellow surround green after red thrice (1) yellow surround green after red thrice (1)

yellow surround green after red thrice (1) yellow surround green after red thrice (1)

yellow surround green after red thrice (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 2/2

●●●
●●● ●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●●● ●●●●
●●●● ●●●●
●●●●

●●●●●●
●●●●●● ●●●●
●●●●● ●●●●

●●●●●●
●●●●●● ●●●●
●●●●●● ●●●●●
●●●●●● ●●●●
●●●●

INPUT: yellow surround blue; OUTPUT: (target)

yellow surround blue (19) yellow surround blue (1)

yellow surround blue (1) yellow surround blue (1)

yellow surround blue (1) yellow surround blue (1)

INPUT: blue after green surround yellow; OUTPUT: (target)

blue after green surround yellow (13) blue after green surround yellow (2)

blue after green surround yellow (1) blue after green surround yellow (1)

blue after green surround yellow (1) blue after green surround yellow (1)

blue after green surround yellow (1)

INPUT: yellow surround yellow after yellow thrice; OUTPUT: (target)

yellow surround yellow after yellow thrice (15) yellow surround yellow after yellow thrice (3)

yellow surround yellow after yellow thrice (1) yellow surround yellow after yellow thrice (1)

INPUT: yellow surround green after red thrice; OUTPUT: (target)

yellow surround green after red thrice (14) yellow surround green after red thrice (1)

yellow surround green after red thrice (1) yellow surround green after red thrice (1)

yellow surround green after red thrice (1) yellow surround green after red thrice (1)

yellow surround green after red thrice (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 2/2

●●●
●●● ●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●●● ●●●●
●●●● ●●●●
●●●●

●●●●●●
●●●●●● ●●●●
●●●●● ●●●●

●●●●●●
●●●●●● ●●●●
●●●●●● ●●●●●
●●●●●● ●●●●
●●●●

INPUT: yellow surround blue; OUTPUT: (target)

yellow surround blue (19) yellow surround blue (1)

yellow surround blue (1) yellow surround blue (1)

yellow surround blue (1) yellow surround blue (1)

INPUT: blue after green surround yellow; OUTPUT: (target)

blue after green surround yellow (13) blue after green surround yellow (2)

blue after green surround yellow (1) blue after green surround yellow (1)

blue after green surround yellow (1) blue after green surround yellow (1)

blue after green surround yellow (1)

INPUT: yellow surround yellow after yellow thrice; OUTPUT: (target)

yellow surround yellow after yellow thrice (15) yellow surround yellow after yellow thrice (3)

yellow surround yellow after yellow thrice (1) yellow surround yellow after yellow thrice (1)

INPUT: yellow surround green after red thrice; OUTPUT: (target)

yellow surround green after red thrice (14) yellow surround green after red thrice (1)

yellow surround green after red thrice (1) yellow surround green after red thrice (1)

yellow surround green after red thrice (1) yellow surround green after red thrice (1)

yellow surround green after red thrice (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 2/2

●●●
●●● ●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●●● ●●●●
●●●● ●●●●
●●●●

●●●●●●
●●●●●● ●●●●
●●●●● ●●●●

●●●●●●
●●●●●● ●●●●
●●●●●● ●●●●●
●●●●●● ●●●●
●●●●

INPUT: yellow surround blue; OUTPUT: (target)

yellow surround blue (19) yellow surround blue (1)

yellow surround blue (1) yellow surround blue (1)

yellow surround blue (1) yellow surround blue (1)

INPUT: blue after green surround yellow; OUTPUT: (target)

blue after green surround yellow (13) blue after green surround yellow (2)

blue after green surround yellow (1) blue after green surround yellow (1)

blue after green surround yellow (1) blue after green surround yellow (1)

blue after green surround yellow (1)

INPUT: yellow surround yellow after yellow thrice; OUTPUT: (target)

yellow surround yellow after yellow thrice (15) yellow surround yellow after yellow thrice (3)

yellow surround yellow after yellow thrice (1) yellow surround yellow after yellow thrice (1)

INPUT: yellow surround green after red thrice; OUTPUT: (target)

yellow surround green after red thrice (14) yellow surround green after red thrice (1)

yellow surround green after red thrice (1) yellow surround green after red thrice (1)

yellow surround green after red thrice (1) yellow surround green after red thrice (1)

yellow surround green after red thrice (1)

zup fep kiki lug

zup blicket wif kiki dax fep

i) Human responses ii) BIML responses
dax blicket zup

* *

* *

*

1-to-11-to-1

IC

*

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 1/2

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●●
●● ●●
●●●

●●
●● ●●
●●●

●●●
●●● ●
●●●● ●●

●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●● ●●●●

●●●●
●●●● ●●●●●
●●●● ●●●●

Human behavior

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

INPUT: yellow after red; OUTPUT: (target)

yellow after red (19) yellow after red (2)

yellow after red (1)

INPUT: green after yellow; OUTPUT: (target)

green after yellow (19) green after yellow (2)

green after yellow (1)

INPUT: yellow thrice; OUTPUT: (target)

yellow thrice (22) yellow thrice (1)

yellow thrice (1) yellow thrice (1)

INPUT: red surround yellow; OUTPUT: (target)

red surround yellow (21) red surround yellow (1)

red surround yellow (1) red surround yellow (1)

INPUT: green after yellow thrice; OUTPUT: (target)

green after yellow thrice (17) green after yellow thrice (1)

green after yellow thrice (1) green after yellow thrice (1)

INPUT: yellow thrice after blue; OUTPUT: (target)

yellow thrice after blue (17) yellow thrice after blue (1)

yellow thrice after blue (1) yellow thrice after blue (1)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 1/3

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●
●●

●●● ●●
●● ●●
●●● ●●
●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●●

Filename net_rbn++_3layer_rep1.tar

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

yellow after red (78.2%) yellow after red (7.3%)

yellow after red (4.5%) yellow after red (4.5%)

yellow after red (2.7%) yellow after red (0.9%)

yellow after red (0.9%) yellow after red (0.9%)

green after yellow (83.6%) green after yellow (5.5%)

green after yellow (4.5%) green after yellow (1.8%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%)

yellow thrice (92.8%) yellow thrice (1.6%)

yellow thrice (1.6%) yellow thrice (1.6%)

yellow thrice (0.8%) yellow thrice (0.8%)

yellow thrice (0.8%)

red surround yellow (83.3%) red surround yellow (5.0%)

red surround yellow (4.2%) red surround yellow (3.3%)

red surround yellow (2.5%) red surround yellow (0.8%)

red surround yellow (0.8%)

green after yellow thrice (85.0%) green after yellow thrice (2.0%)

green after yellow thrice (2.0%) green after yellow thrice (2.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 1/3

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●
●●

●●● ●●
●● ●●
●●● ●●
●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●●

Filename net_rbn++_3layer_rep1.tar

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

yellow after red (78.2%) yellow after red (7.3%)

yellow after red (4.5%) yellow after red (4.5%)

yellow after red (2.7%) yellow after red (0.9%)

yellow after red (0.9%) yellow after red (0.9%)

green after yellow (83.6%) green after yellow (5.5%)

green after yellow (4.5%) green after yellow (1.8%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%)

yellow thrice (92.8%) yellow thrice (1.6%)

yellow thrice (1.6%) yellow thrice (1.6%)

yellow thrice (0.8%) yellow thrice (0.8%)

yellow thrice (0.8%)

red surround yellow (83.3%) red surround yellow (5.0%)

red surround yellow (4.2%) red surround yellow (3.3%)

red surround yellow (2.5%) red surround yellow (0.8%)

red surround yellow (0.8%)

green after yellow thrice (85.0%) green after yellow thrice (2.0%)

green after yellow thrice (2.0%) green after yellow thrice (2.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 1/3

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●
●●

●●● ●●
●● ●●
●●● ●●
●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●●

Filename net_rbn++_3layer_rep1.tar

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

yellow after red (78.2%) yellow after red (7.3%)

yellow after red (4.5%) yellow after red (4.5%)

yellow after red (2.7%) yellow after red (0.9%)

yellow after red (0.9%) yellow after red (0.9%)

green after yellow (83.6%) green after yellow (5.5%)

green after yellow (4.5%) green after yellow (1.8%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%)

yellow thrice (92.8%) yellow thrice (1.6%)

yellow thrice (1.6%) yellow thrice (1.6%)

yellow thrice (0.8%) yellow thrice (0.8%)

yellow thrice (0.8%)

red surround yellow (83.3%) red surround yellow (5.0%)

red surround yellow (4.2%) red surround yellow (3.3%)

red surround yellow (2.5%) red surround yellow (0.8%)

red surround yellow (0.8%)

green after yellow thrice (85.0%) green after yellow thrice (2.0%)

green after yellow thrice (2.0%) green after yellow thrice (2.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 1/3

● ●
● ●
●● ●●
●●● ●●●
●●● ●●●
●●●● ●●●●
●●●● ●●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●

●● ●●
●●● ●●●
●●● ●●
●●● ●●●
●●

●●● ●●
●● ●●
●●● ●●
●●

●●● ●●●
●●● ●●●
●●● ●●●
●●●

●●●● ●●●●●●

Filename net_rbn++_3layer_rep1.tar

Training examples

red green

blue yellow

blue after green red after blue

blue thrice blue surround green

red thrice green surround red

blue thrice after green green after red surround blue

blue after green thrice green surround red after blue

Test examples

yellow after red (78.2%) yellow after red (7.3%)

yellow after red (4.5%) yellow after red (4.5%)

yellow after red (2.7%) yellow after red (0.9%)

yellow after red (0.9%) yellow after red (0.9%)

green after yellow (83.6%) green after yellow (5.5%)

green after yellow (4.5%) green after yellow (1.8%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%) green after yellow (0.9%)

green after yellow (0.9%)

yellow thrice (92.8%) yellow thrice (1.6%)

yellow thrice (1.6%) yellow thrice (1.6%)

yellow thrice (0.8%) yellow thrice (0.8%)

yellow thrice (0.8%)

red surround yellow (83.3%) red surround yellow (5.0%)

red surround yellow (4.2%) red surround yellow (3.3%)

red surround yellow (2.5%) red surround yellow (0.8%)

red surround yellow (0.8%)

green after yellow thrice (85.0%) green after yellow thrice (2.0%)

green after yellow thrice (2.0%) green after yellow thrice (2.0%)

IC IC

1-to-11-to-1 1-to-1

zup kiki dax zup kiki dax

1-to-1

IC IC

IC

1-to-1

dax blicket zup

zup fep kiki lug

zup blicket wif kiki dax fep

**

B) Test instructionsA) Study instructions

Figure 1: Few-shot instruction learning task involves generating sequences of abstract outputs (colored

circles) in response to instructions (pseudo-words). Based on the study instructions (A; headings were

not provided to participants), humans and the BIML model executed test instructions (B; 4 of 10

shown). The four most frequent responses are shown for people (marked with count in parentheses)

and the BIML model (marked with percentage of samples). Superscripts indicate the following: * is

the algebraic answer, 1-to-1 is an one-to-one error, and IC is an iconic concatenation error.

of grammaticality are not needed. Instead, participants generate sequences of symbols in
response to sequences of words, allowing computational systems to directly model the resulting
data by building upon the powerful sequence-to-sequence (seq2seq) toolkit from machine
learning (39,40). All experiments were run on Amazon Mechanical Turk and psiTurk (41).

Systematic generalization was evaluated through a few-shot learning paradigm. As il-
lustrated in Fig. 1, participants were provided with a curriculum of 14 study instructions
(input/output pairs) and asked to produce outputs for 10 test instructions. The study instruc-
tions were consistent with an underlying interpretation grammar, which derives outputs from
inputs through a set of compositional re-write rules (see Supplement). Evaluated against this
algebraic standard, the average performance across participants was 84.3% correct (N = 25)
for exactly matching the entire output sequence (marked with * in Fig. 1B-i). Notably,
participants often generalized correctly to longer output sequences than seen during training
(72.5% correct; an example is shown as the last instruction in Fig. 1B-i), which is a type of
generalization that neural networks often struggle with (16, 42, 43). When deviating from
this algebraic standard, the responses were still highly non-random and suggestive of strong
inductive biases. Many errors involved “one-to-one” translations that mapped each input word
to exactly one output symbol, as if all words were primitives (24.4% of all errors; marked with
1-to-1 in Fig. 1B-i). Other errors involved misapplying a function that requires reversing the
order of its input arguments (function 3 or “kiki” in Fig. 1), suggesting an “iconic concatenation”
bias for maintaining the order of the input words in the order of the output symbols (23.3% of
all errors involving function 3 followed this pattern; marked with IC in Fig. 1B-i). Beyond this
task, these response patterns can be compared to biases in language acquisition more generally;
indeed, forms of one-to-one (44,45) and iconic concatenation (46–48) are widely attested in
natural language.

These inductive biases were evaluated more directly through an open-ended instruction
task. Different participants were asked to make plausible guesses regarding the outputs of 7
novel instructions and how they relate to one another (responding to “fep fep” or “zup fep”
with a series of colored circles), without seeing any input/output examples to influence their
responses (see Fig. 2 for full task; Supplement for more details). Despite the unconstrained
nature of the test, people’s responses were highly structured and confirm the previous two
inductive biases. People’s responses also followed a third bias related to mutual exclusivity
(ME) which encourages assigning unique meanings to unique words (44,45). Reflecting the
strong influence of the biases, the majority of participants (17 of 29; 58.6%) responded with a
pattern analogous to that in Fig. 2 (leftmost column in A and B), which is perfectly consistent
with all three inductive biases. Across all of the responses, X of 29 participants followed

2

Support inputs/outputs

Human responses

Query

BIML responses

zup blicket wif kiki dax fep

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 2/2

●●●
●●● ●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●●● ●●●●
●●●● ●●●●
●●●●

●●●●●●
●●●●●● ●●●●
●●●●● ●●●●

●●●●●●
●●●●●● ●●●●
●●●●●● ●●●●●
●●●●●● ●●●●
●●●●

INPUT: yellow surround blue; OUTPUT: (target)

yellow surround blue (19) yellow surround blue (1)

yellow surround blue (1) yellow surround blue (1)

yellow surround blue (1) yellow surround blue (1)

INPUT: blue after green surround yellow; OUTPUT: (target)

blue after green surround yellow (13) blue after green surround yellow (2)

blue after green surround yellow (1) blue after green surround yellow (1)

blue after green surround yellow (1) blue after green surround yellow (1)

blue after green surround yellow (1)

INPUT: yellow surround yellow after yellow thrice; OUTPUT: (target)

yellow surround yellow after yellow thrice (15) yellow surround yellow after yellow thrice (3)

yellow surround yellow after yellow thrice (1) yellow surround yellow after yellow thrice (1)

INPUT: yellow surround green after red thrice; OUTPUT: (target)

yellow surround green after red thrice (14) yellow surround green after red thrice (1)

yellow surround green after red thrice (1) yellow surround green after red thrice (1)

yellow surround green after red thrice (1) yellow surround green after red thrice (1)

yellow surround green after red thrice (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 2/2

●●●
●●● ●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●●● ●●●●
●●●● ●●●●
●●●●

●●●●●●
●●●●●● ●●●●
●●●●● ●●●●

●●●●●●
●●●●●● ●●●●
●●●●●● ●●●●●
●●●●●● ●●●●
●●●●

INPUT: yellow surround blue; OUTPUT: (target)

yellow surround blue (19) yellow surround blue (1)

yellow surround blue (1) yellow surround blue (1)

yellow surround blue (1) yellow surround blue (1)

INPUT: blue after green surround yellow; OUTPUT: (target)

blue after green surround yellow (13) blue after green surround yellow (2)

blue after green surround yellow (1) blue after green surround yellow (1)

blue after green surround yellow (1) blue after green surround yellow (1)

blue after green surround yellow (1)

INPUT: yellow surround yellow after yellow thrice; OUTPUT: (target)

yellow surround yellow after yellow thrice (15) yellow surround yellow after yellow thrice (3)

yellow surround yellow after yellow thrice (1) yellow surround yellow after yellow thrice (1)

INPUT: yellow surround green after red thrice; OUTPUT: (target)

yellow surround green after red thrice (14) yellow surround green after red thrice (1)

yellow surround green after red thrice (1) yellow surround green after red thrice (1)

yellow surround green after red thrice (1) yellow surround green after red thrice (1)

yellow surround green after red thrice (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 2/2

●●●
●●● ●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●●● ●●●●
●●●● ●●●●
●●●●

●●●●●●
●●●●●● ●●●●
●●●●● ●●●●

●●●●●●
●●●●●● ●●●●
●●●●●● ●●●●●
●●●●●● ●●●●
●●●●

INPUT: yellow surround blue; OUTPUT: (target)

yellow surround blue (19) yellow surround blue (1)

yellow surround blue (1) yellow surround blue (1)

yellow surround blue (1) yellow surround blue (1)

INPUT: blue after green surround yellow; OUTPUT: (target)

blue after green surround yellow (13) blue after green surround yellow (2)

blue after green surround yellow (1) blue after green surround yellow (1)

blue after green surround yellow (1) blue after green surround yellow (1)

blue after green surround yellow (1)

INPUT: yellow surround yellow after yellow thrice; OUTPUT: (target)

yellow surround yellow after yellow thrice (15) yellow surround yellow after yellow thrice (3)

yellow surround yellow after yellow thrice (1) yellow surround yellow after yellow thrice (1)

INPUT: yellow surround green after red thrice; OUTPUT: (target)

yellow surround green after red thrice (14) yellow surround green after red thrice (1)

yellow surround green after red thrice (1) yellow surround green after red thrice (1)

yellow surround green after red thrice (1) yellow surround green after red thrice (1)

yellow surround green after red thrice (1)

6/20/22, 4:26 PM human-rule-responses.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/human-rule-responses.html 2/2

●●●
●●● ●●●
●●● ●●●
●●● ●●●

●●●●
●●●● ●●●●
●●●●● ●●●●
●●●● ●●●●
●●●●

●●●●●●
●●●●●● ●●●●
●●●●● ●●●●

●●●●●●
●●●●●● ●●●●
●●●●●● ●●●●●
●●●●●● ●●●●
●●●●

INPUT: yellow surround blue; OUTPUT: (target)

yellow surround blue (19) yellow surround blue (1)

yellow surround blue (1) yellow surround blue (1)

yellow surround blue (1) yellow surround blue (1)

INPUT: blue after green surround yellow; OUTPUT: (target)

blue after green surround yellow (13) blue after green surround yellow (2)

blue after green surround yellow (1) blue after green surround yellow (1)

blue after green surround yellow (1) blue after green surround yellow (1)

blue after green surround yellow (1)

INPUT: yellow surround yellow after yellow thrice; OUTPUT: (target)

yellow surround yellow after yellow thrice (15) yellow surround yellow after yellow thrice (3)

yellow surround yellow after yellow thrice (1) yellow surround yellow after yellow thrice (1)

INPUT: yellow surround green after red thrice; OUTPUT: (target)

yellow surround green after red thrice (14) yellow surround green after red thrice (1)

yellow surround green after red thrice (1) yellow surround green after red thrice (1)

yellow surround green after red thrice (1) yellow surround green after red thrice (1)

yellow surround green after red thrice (1)

*

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 3/3

●

●●●●●● ●●●●●
●

●●●●●● ●●●●●
●

●●●●●● ●●●●●
●

●●●●●●

●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●

●●●●●● ●●●●●●
●●

●●●●●●●
● ●●●●●●

●●●●●● ●●●●●●

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%)

yellow surround green after red
thrice (76.0%) yellow surround green after red

thrice (9.0%)

yellow surround green after red
thrice (2.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 3/3

●

●●●●●● ●●●●●
●

●●●●●● ●●●●●
●

●●●●●● ●●●●●
●

●●●●●●

●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●

●●●●●● ●●●●●●
●●

●●●●●●●
● ●●●●●●

●●●●●● ●●●●●●

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%)

yellow surround green after red
thrice (76.0%) yellow surround green after red

thrice (9.0%)

yellow surround green after red
thrice (2.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 3/3

●

●●●●●● ●●●●●
●

●●●●●● ●●●●●
●

●●●●●● ●●●●●
●

●●●●●●

●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●

●●●●●● ●●●●●●
●●

●●●●●●●
● ●●●●●●

●●●●●● ●●●●●●

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%)

yellow surround green after red
thrice (76.0%) yellow surround green after red

thrice (9.0%)

yellow surround green after red
thrice (2.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

6/20/22, 4:37 PM full_BIML_miniscan_behavior_samples.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/analysis-rule-learning/full_BIML_miniscan_behavior_samples.html 3/3

●

●●●●●● ●●●●●
●

●●●●●● ●●●●●
●

●●●●●● ●●●●●
●

●●●●●●

●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●
●●●●●● ●●●●●●

●●●●●● ●●●●●●
●●

●●●●●●●
● ●●●●●●

●●●●●● ●●●●●●

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%) yellow surround yellow after

yellow thrice (1.0%)

yellow surround yellow after yellow
thrice (1.0%)

yellow surround green after red
thrice (76.0%) yellow surround green after red

thrice (9.0%)

yellow surround green after red
thrice (2.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

yellow surround green after red
thrice (1.0%) yellow surround green after red

thrice (1.0%)

*

zup blicket wif kiki dax fep

Comparing people and BIML on few-shot
instruction learning

zup?

zup tufa?

zup zup?

zup wif zup?

zup wif blicket?zup wif zup?

Episode 1
Support

Query

Episode 2
Support

Query

Open-ended test

Optimization over a series of dynamically changing seq2seq tasks (episodes).
• Episodes are based on augmented versions of human responses from Experiment 2
• Final model is evaluated on open-ended test task

Comparing people and BIML on open-ended
instruction task

● ●●

●● ●●

●●● ●●●

●●●

●● ●●●

●●● ●●●●

●●●● ●●●●●

●●●●

● ●●

●● ●●

Participant 0
one-to-one; iconic concatenation; mutual exclusivity

fep fep fep

zup fep fep wif

fep dax fep kiki dax fep

fep dax kiki

Participant 1
iconic concatenation;

gazzer wif gazzer

gazzer lug gazzer gazzer

gazzer zup dax gazzer zup gazzer

dax zup gazzer

Participant 2
one-to-one;

wif blicket wif

wif wif wif kiki

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-biases-v2/analysis_bias...

1 of 11 10/24/18, 6:23 PM

Results: Free-form responses

Representative of most participants (59%)

Characteristics of the majority response:
• Each word has a unique color
• Mapping is consistent
• Satisfies all three biases

Overall analysis of biases
• 59% showed all three biases
• one-to-one (62%)
• iconic concatenation (79%)
• Of those using iconic concatenation,

mutual exclusivity was 96%

● ●●

●● ●●

●●● ●●●

●●●

●● ●●●

●●● ●●●●

●●●● ●●●●●

●●●●

● ●●

●● ●●

Participant 0
one-to-one; iconic concatenation; mutual exclusivity

fep fep fep

zup fep fep wif

fep dax fep kiki dax fep

fep dax kiki

Participant 1
iconic concatenation;

gazzer wif gazzer

gazzer lug gazzer gazzer

gazzer zup dax gazzer zup gazzer

dax zup gazzer

Participant 2
one-to-one;

wif blicket wif

wif wif wif kiki

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-biases-v2/analysis_bias...

1 of 11 10/24/18, 6:23 PM

Results: Free-form responses

Representative of most participants (59%)

Characteristics of the majority response:
• Each word has a unique color
• Mapping is consistent
• Satisfies all three biases

Overall analysis of biases
• 59% showed all three biases
• one-to-one (62%)
• iconic concatenation (79%)
• Of those using iconic concatenation,

mutual exclusivity was 96%

● ●●

●● ●●

●●● ●●●

●●●

●● ●●●

●●● ●●●●

●●●● ●●●●●

●●●●

● ●●

●● ●●

Participant 0
one-to-one; iconic concatenation; mutual exclusivity

fep fep fep

zup fep fep wif

fep dax fep kiki dax fep

fep dax kiki

Participant 1
iconic concatenation;

gazzer wif gazzer

gazzer lug gazzer gazzer

gazzer zup dax gazzer zup gazzer

dax zup gazzer

Participant 2
one-to-one;

wif blicket wif

wif wif wif kiki

file:///Users/Brenden/Documents/NYU/code/SCAN-exp/analysis-biases-v2/analysis_bias...

1 of 11 10/24/18, 6:23 PM

Results: Free-form responses

Representative of most participants (59%)

Characteristics of the majority response:
• Each word has a unique color
• Mapping is consistent
• Satisfies all three biases

Overall analysis of biases
• 59% showed all three biases
• one-to-one (62%)
• iconic concatenation (79%)
• Of those using iconic concatenation,

mutual exclusivity was 96%

Comparing people and BIML on open-ended
instruction task

Log-likelihood
(larger is better)

Baseline -173.2

Symbolic (tuned) -92.6

BIML (algebraic only) -150.1

BIML -64.2

• After optimization, 65% of BIML samples recreate the modal human
response pattern (59% of people)

• For predicting human open-ended responses…

6/18/22, 5:42 PM human_beh_freeform.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/human_beh_freeform.html 1/8

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●
●●●
●●●●
●●●●
●●●●●
●●●●

●
●●
●●
●●
●●●
●●●
●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

Participant 0
one-to-one; iconic concatenation; mutual exclusivity

fep

fep fep

zup fep

fep wif

fep dax fep

kiki dax fep

fep dax kiki

Participant 1
 iconic concatenation;

gazzer

wif gazzer

gazzer lug

gazzer gazzer

gazzer zup dax

gazzer zup gazzer

dax zup gazzer

Participant 2

wif

blicket wif

wif wif

wif kiki

wif zup dax

wif zup wif

dax zup wif

Participant 3

kiki

dax kiki

kiki kiki

kiki wif

kiki lug fep

fep lug kiki

6/18/22, 5:42 PM human_beh_freeform.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/analysis/human_beh_freeform.html 4/8

●●●
●●●●
●●●●●
●●●●●
●●●●●●

●
●●
●●
●●
●●●
●●●
●●●

●
●●
●●
●●
●●●
●●●
●●●

●
●●
●●
●●
●●●
●●●●
●●●●

blicket wif

blicket blicket

blicket gazzer zup

zup gazzer blicket

blicket gazzer blicket

Participant 12
 one-to-one; iconic concatenation; mutual exclusivity

wif

wif blicket

wif wif

kiki wif

wif gazzer wif

wif gazzer dax

dax gazzer wif

Participant 13
 one-to-one; iconic concatenation; mutual exclusivity

zup

lug zup

zup zup

zup tufa

zup wif zup

fep wif zup

zup wif fep

Participant 14

dax

dax dax

fep dax

dax wif

dax gazzer dax

kiki gazzer dax

dax gazzer kiki

Participant 15
 one-to-one; iconic concatenation; mutual exclusivity

lug

6/21/22, 9:25 AM full_BIML_freeform_worksheet.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/full_BIML_freeform_worksheet.html 1/7

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●●
●●●
●●●
●●●●●
●●●●●●
●●●●●

●
●●
●●
●●
●●●
●●●●
●●●●

filename net_beh_worksheet_rep2.tar;
full_BIML_freeform_worksheet
Episode 0

support

dax

dax dax

tufa dax

dax lug

blicket gazzer dax

dax gazzer dax

dax gazzer blicket

query : 100.0% consistent

Episode 1

support

tufa

tufa tufa

tufa zup

lug tufa

tufa dax gazzer

tufa dax tufa

gazzer dax tufa

query : 0.0% consistent

Episode 2

support

tufa

blicket tufa

tufa kiki

tufa tufa

tufa dax tufa

wif dax tufa

tufa dax wif

query : 0.0% consistent

6/21/22, 9:25 AM full_BIML_freeform_worksheet.html

file:///Users/Brenden/Documents/NYU/code/NN-SCAN-LIKE/batch_meta_seq2seq/results_in_paper/full_BIML_freeform_worksheet.html 1/7

●
●●
●●
●●
●●●
●●●
●●●

●●
●●●●
●●●
●●●
●●●●●
●●●●●●
●●●●●

●
●●
●●
●●
●●●
●●●●
●●●●

filename net_beh_worksheet_rep2.tar;
full_BIML_freeform_worksheet
Episode 0

support

dax

dax dax

tufa dax

dax lug

blicket gazzer dax

dax gazzer dax

dax gazzer blicket

query : 100.0% consistent

Episode 1

support

tufa

tufa tufa

tufa zup

lug tufa

tufa dax gazzer

tufa dax tufa

gazzer dax tufa

query : 0.0% consistent

Episode 2

support

tufa

blicket tufa

tufa kiki

tufa tufa

tufa dax tufa

wif dax tufa

tufa dax wif

query : 0.0% consistent

1-to-1, IC, ME 1-to-1, IC, ME IC

BIML responsesHuman responses

Comparing people and BIML on open-ended
instruction task

Limitations and open questions

We would like neural network models that can do

• Few-shot induction of primitives and functions, and compose
them flexibly and algebraically

• Prefer hypotheses that capture certain input/output regularities
in meaning (1-to-1, IC, and ME)

• Model adult compositional skills (in this case, through meta-
learning)

Limitations and open questions
• How can a model learn entirely new primitives, rather than

simply new primitive mappings?
• How do these abilities develop? How do people come to this

rich starting point?

Conclusions

1. Despite remarkable progress in deep learning, F&P’s (1988) article
is still being debated today

2. Here, we used behavioral studies to compare humans and machines
side-by-side on the same tests of systematicity
- most common response is algebraic
- People also rely on inductive biases that are good heuristics but

can also lead people astray (1-to-1, IC, ME)

3. BIML shows how neural nets can achieve human-like systematic
generalization, through an optimization procedure that encourages
systematicity.

4. Hopefully informs engineering efforts to build more capable and
more human-like AI systems

