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Can neural networks for language
generalize compositionally?

e |t depends!

 For models trained (“pretrained”) to predict missing
words:

* |s generalization measured on the original objective or
on transfer to a new task?

e What is meant by compositionality? Distinguishing lexical
and structural generalization



When generating text, does
GPT-2 parrot its training corpus?

Novel words constructed using English
morphological rules, used in a
syntactically appropriate way:

(11) a. Ilove Klymits, but it has been nearly im-
possible for us to find them in stores .
b. The Sarrats were lucky to have her as
part of their lives

(12) a. these small townites
b. so many Brazilianisms

(McCoy, Smolensky, Linzen, Gao & Celikyilmaz, 2021, arXiv)



When generating text, does
GPT-2 parrot its training corpus?

A verb seen in training only in the
passive voice iIs used in the active voice:

(1) Transformer:  They then dry-
docked at Sasebo on 22 January
1916 to be fitted with an additional
4.5 cm / 40 anti-aircraft (AA) guns.

(11) Training example: Ostfriesland was
drydocked in Wilhelmshaven for
repairs , which lasted until 26 July

(McCoy, Smolensky, Linzen, Gao & Celikyilmaz, 2021, arXiv)



When generating text, does
GPT-2 parrot its training corpus?
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(McCoy, Smolensky, Linzen, Gao & Celikyilmaz, 2021, arXiv)



Probing a language model’s syntactic
representations using the number
prediction task

The length of the forewings... Singular
The keys to the cabinets... Plural
key to the cabinets  was
() ) () () ()
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The key to the cabinets

The keys to the cabinets.... P(were) > P(was)?



This Is easy, with the right
representations

The key to the cabinets Is on the table.
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Are neural networks that are not desighed around
such structural representations able to do this task?



Test sentences

* The angry brown dogs that sit by the cat bark/barks
furiously.

* The colorless green ideas that sit by the honor sleep/
sleeps furiously.



Language models generalize
grammatical rules to novel sentences

“Human subjects BLSTM
Original Nonce

Accuracy %

Number of attractors

(Gulordava, Bojanowski, Grave,
Linzen & Baroni, 2018, NAACL)



Can neural networks for language
generalize compositionally?

e |t depends!

 For models trained (“pretrained”) to predict missing
words:
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on transfer to a new task?
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Lexical generalization: a
familiar word Iin a new context

In training set In generalization set
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saw a cat met Paula saw a cat



Structural generalization: a new
combination of familiar structures

In training set In generalization set
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Evaluating compositionally
In semantic parsing

Goal: convert a sentence into a normalized logical form (meaning representation);
can then be used to query a database, send commands to a robot, etc

The girl saw the hedgehog =
The hedgehog was seen by the girl =
It was the hedgehog that the girl saw = ...

see'(ty.girl'(y),x.hedgehog'(x))

ly.gi};i:(:\/) %b.see'(b,lx.:l:i::c_:__dgellog'(x))

The giri '/,a.'/,b.sgé‘(b,a) 1x.hedg§_l__10g'(x)

saw the hedgehog




COGS: Benchmark for compositional
generalization in semantic parsing

* Models trained “from scratch” on the training set and
evaluated on the generalization set

Case Training Generalization
Subject — Object Subject Object
LeXxical (common noun) A hedgehog ate the cake. The baby liked the hedgehog.
generalization
Object — Subject Object Subject
(common noun) Henry liked a cockroach. The cockroach ate the bat.
Depth generalization: PP Depth 2 Depth 3
Strucl!:ura_l modifiers Ava saw the ball in the bottle Ava saw the ball in the bottle
generallzatlon on the table. on the table on the floor.

(Kim & Linzen, 2020, EMNLP)
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Lexical generalization: a familiar word in a new context

Structural generalization: a new combination of familiar structures



Measuring compositional generalization
with a pretrained model is hard

* |s it plausible to assume that hedgehog never occurred In
the object position in TS’s training corpus?

Case Training Generalization
Lexical Subject — Object Subject Object
generaliza tion (common noun) A hedgehog ate the cake. The baby liked the hedgehog.
Object — Subject Object Subject
(common noun) Henry liked a cockroach. The cockroach ate the bat.

(Najoung Kim, unpublished dissertation, 2021)



Pretraining might hurt compositional
generalization, when words are truly novel
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COGS structural generalization
Is difficult across models

STRUCT LEX
Model Class Model Obj to Subj PP CP recursion PP recursion | all 18 other types
BART 0 0 12 91
BART+syn 0 5 8 93
TS5 0 0 9 97
Kim and Linzen 2020 0 0 0 73
seq2seq Akyiirek and Andreas 2021 0 0 1 96
Zheng and Lapata 2022 0 12 39 99
Conklin et al. 2021 0 0 0 88
Csordas et al. 2021 0 0 0 95
Qiu et al. 2021 * 100 100 100 100
struchire-aware Liu.el al. 2021 93 100 99 99
WeilBenhorn et al. 2022 78 100 99 100

(WeiBenhorn, Yao, Donatelli & Koller, 2022, *SEM,
Compositional Generalization Requires Compositional Parsers)



Data augmentation using a symbolic induced
grammar: the robustness of a neural parser
combined with a symbolic crutch

ORIGINAL EXAMPLES

Add an event for next Tuesday to my calendar
— (CreateEvent (date= NextDOW(dow=TUE) ))
Create a meeting with Alice tomorrow
— (CreateEvent (attendees= "Alice" , date= TMRW ))

Who is on Bob ’s team
— ( FindTeam0Of (person= "Bob" ) )

Y
[ Train CSL, a generative model with latent compositional structure ]
v
CSL

S——
[ Sample synthetic examples from CSL J

v
SYNTHETIC EXAMPLES

Create a meeting with Alice ’s team next Tuesday
— (CreateEvent (attendees= FindTeamOf (person=
"Alice" ) , date= NextDOW(dow=TUE) ))

v
[Train TS5 on original and synthetic examplesj
v

Augmented TS5

(uiu et al, 2022, NAACL)



Does this matter? Sample efficiency in pretraining

Humans Neural networks
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(Linzen, 2020, ACL)



Does this matter? Sample efficiency in pretraining

Humans Neural networks
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Does this matter?

* For many semantic tasks (like semantic parsing) that are
useful in practice, we often have a small fine-tuning
dataset

* |f we are able to give models a compositional inductive
bias, they will generalize appropriately from a small
amount of data (in pretraining or in transfer)



HANS: Heuristic Analysis of
NLI Systems
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HANS: Case-by-case results (where the
heuristic makes an incorrect prediction)

Heuristic Subcase DA ESIM SPINN BERT
Lexical Subject-object swap 0.00 0.00 0.03 0.00

BERT trained on MNLI always predicts that
The lawyer advised the judge
entails

The judge advised the lawyer

(McCoy, Pavlick
& Linzen, 2019,
ACL)



Conclusions

e | .anguage models do much more than memorize,
especially when evaluated on their training objective

* They can parse colorless green idea sentences and
generate novel text: compositional generalization!

 (Caveat: even n-gram models with smoothing do more
than memorize



Conclusions

Transfer to new tasks (e.g. semantic parsing) is less
Impressive

There is a fundamental distinction between lexical
generalization and structural generalization

Is structural generalization even useful if you’ve seen billions
of English sentences, with basically all possible structures?

What about “in-context learning” / “language models are
few shot learners”? Probably more like fine-tuning than tests
on the original objective



