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No One Metric is Enough!
Combining Evaluation Techniques to Uncover Latent Structure
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What does it mean to be “compositional”?
This Talk

• I will focus on the latter definition: i.e., “compositional” in the stronger, quasi-formal-
language sense


• I focus on this definition because:


• The answer is non-obvious, how to go about answering it is non-trivial, and thus it 
is interesting!


• Some aspects of human cognition likely require some aspects of this type of 
representation (e.g., we can do math, and we can write code, so, at least sometimes, 
we do logic)


• AI will be used for many things, not just replicating humans. It’s relevant whether 
a computational model can implement such a system, whether or not humans do it.



What does it mean to be “compositional”?
Disclaimers on my personal opinions

• I do not use this definition because.


• I believe these representations are “right” and others are “wrong”. 


• I believe that these representations are necessarily required for “human-
level” language performance
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Disclaimers on my personal opinions

• I adopt a liberal version of this definition. So, let’s concede:


• Representations can (should!) be continuous. This isn’t a debate about 
discrete vs. continuous, its about compositional vs. non-compositional. 


• Syntax-driven semantic composition is an important part of the story, its 
not the whole story. Top-down influence/context-dependence is 
allowed (necessary!). Idiomatic use and memorization is allowed 
(necessary!). The point is that a competent AI system has to have the 
capacity to represent this type of structure somewhere, somehow
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Representation vs. Behavioral Evaluation

• Compositionality (as defined) is a property of representations, not behavior


• That doesn’t mean behavioral evaluations are not valuable! We of course need 
to know what models actually do!


• But behavioral evaluations, no matter how carefully constructed, are not 
diagnostic of representations. They alone can’t answer our question.


• We need ways to directly inspect the internal representations of the model



• Empirical measures defined over something other than model inputs and outputs


• Some are slight extensions of behavioral tests, e.g.,   


• Learning Curves: when is one skill acquired relative to another?


• Reaction/Processing Times: how much “work” is required to produce an output?


• Some are more qualitative:


• Visualization: Which representations are most similar to one another? 


• Feature Attribution: Which features does the model attend to most to make this decision?


• Newer methods (still in development) attempt to discover explicit mechanisms in the network: 


• Probing: Which neuron or combination of neurons carries this information?


• Interventions (Pruning/Freezing/Splicing): Can we find the piece of the network that corresponds to a specific behavior?

Representation vs. Behavioral Evaluation
What is a “representational” evaluation?
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Is our end-to-end NN functionally equivalent to 
the above system?
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understand some sentences is 
intrinsically connected to the 
ability to produce/understand 
certain others…[they] must be 
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(Fodor&Pylyshyn, 1988)

Internal 
representations of 
“parts” should be 
identifiable, and 
stable(ish) across 
different inputs.
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much in progress, and very 

much in the weeds.
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Takeaways

• When learning to discriminate visual concepts, end-to-end NNs learn complex internal representations


• These representations meet basic criteria of “structured” compositional representations


• They are grounded in the external world


• Complex concepts are build from reusable parts


• Parts are sufficiently disentangled


• Representations of parts might be causally implicated in representations of wholes


• Pretrained models show some advantage, but results are preliminary


• Some desirable inductive biases (shape > color in object naming)


• Pretrained transformer might fair better on causality tests



Discussion

• NNs’ representations are “points in space”, but these points arguably can be 
understood as structured representations consisting of reusable constituent parts 

• Determining the exact form of these representations take requires using empirical 
measures other than behavior 

• There is serious methodological development required to build and vet these new 
empirical measures, but we have already begun and its within reach


• Whether these models meet the critiera of “compositional” requires serious 
theoretical development. I don’t think the earlier debates anticipated models quite 
like this, and thus there is still work to do to refine definitions in order to know whether 
the current models are capable of giving us what we want.



Thank you!
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