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The Challenge of  Compositionality for AI 
is	to	develop	an	effec-ve	formalism	for	

composi-onality	that	resides	in	vector	spaces.	
A	proposed	solu-on	to	this	challenge	is	presented	

in	a	pair	of	recent	papers	wri6en	with	several	
collaborators:		Neurocomposi-onal	compu-ng	

Nascent	forms	of	neurocomposi-onality	give	CNNs	
&	Transformers	their	boosted	power:	1G	

Sources 

Paul Smolensky, R. Thomas McCoy, Roland Fernandez, 
Ma:hew Goldrick, Jianfeng Gao. In press. 
Neurocompositional computing: From the Central Paradox 
of Cognition to a new generation of AI systems.  
AI Magazine. h6p://arxiv.org/abs/2205.01128	 

Paul Smolensky, R. Thomas McCoy, Roland Fernandez, 
Ma:hew Goldrick, Jianfeng Gao. 2022. Neurocompositional 
computing in human and machine intelligence: A tutorial. 
Microsoft Technical Report MSR-TR-2022-5,  
h6ps://www.microsoH.com/en-us/research/publica-on/
neurocomposi-onal-compu-ng-in-human-and-machine-
intelligence-a-tutorial/	 

Thanks for financial support to NSF, Microsoft

In	their	highly	influen-al	paper	
	 Connec-onism	and	cogni-ve	architecture:	
A	cri-cal	analysis		(Cogni-on,	1988)	

Jerry	Fodor	&	Zenon	Pylyshyn	claimed	that	
composi-onality	was	a	profound	problem	
for	neural	networks	(‘connec-onism’)		

• Debate	at	MIT	in	1988	(bootleg	recording	
available	on	youtube).		

• Wri6en	debate:	8	papers,	1987	–	2006.

Synopsis	
✦	what:	Neurocompositional	Computing	for	AI	
✦	why:	deeper	understanding	in	AI	systems	

demands	continuous	compositional	
encodings		

✦	key:	continuous	compositionality		
✦ how:	Vector-embed	compositionality	

primitives	in	DL	net:	NECST	computing	
•	primitives:	filler/role	decomposition	etc.	
•	Vector	embedding:	Tensor	Product	Reps.	

✦ assessment:	Sufficiency	of	NECST:		
•	Computability	(in	principle)	
•	Learnability	(in	practice)

http://arxiv.org/abs/2205.01128
https://www.microsoft.com/en-us/research/publication/neurocompositional-computing-in-human-and-machine-intelligence-a-tutorial/
https://www.microsoft.com/en-us/research/publication/neurocompositional-computing-in-human-and-machine-intelligence-a-tutorial/
https://www.microsoft.com/en-us/research/publication/neurocompositional-computing-in-human-and-machine-intelligence-a-tutorial/
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Compositionality, intuitively
informa-on	is	encoded	in	structures	composed	of	

simpler	encodings;	understanding	the	whole	is	
built	by	composing	understanding	of	the	parts	

e.g.,	understanding	that			
plans	are	composed	of	sub-plans	which	are	

composed	of	sub-sub-plans	
scenes	…	sub-scenes	…	sub-sub-scenes	
phrases	…	sub-phrases	…	sub-sub-phrases	
inferences	…	sub-inferences	…	sub-sub-inferences	
formal	expressions	…	sub-expressions	…	sub-

sub-expressions

current	AI	systems	don’t	understand	that	
the	world	is	deeply	composi-onal,	to	a	
good	first	approxima-on		

DNNs’	power	comes	from	con-nuity	—	in	
representa-ons,	processes	&	learning	—	
need	encodings	that	are	simultaneously	
• con-nuous	(learnable)		
• composi-onal	

i.e.,	con-nuous	composi-onal	structure	
This	defines	neurocomposi-onal	compu-ng

vs.	hybrids

they	don’t	have	a	strong	bias	pushing	them	
to		encode		the		world			composi-onally

which	GOFAI	symbolic	AI	did	have	⇒	yielding	
robust	(discrete)	composi-onal	generaliza-on

but	discreteness	is	very	limi-ng
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Continuous compositionality, intuitive examples
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Continuous compositionality, intuitive examples
• con-nuous	content	in	composi-onal	structure	
French	ami	(‘friend’)	pronounced	as	

tami	 	 nami	 zami		 ami	
pe-t	ami	 un	ami	 les	amis	 joli	ami	

Propose	stored	form	in	the	mental	dic-onary	is	
[0.09*t	+	0.09*n	+	0.09*z]	a	m	i	

which	of	t/n/z	is	pronounced	(if	any)	is	
determined	by	the	end	of	the	previous	word	

☞	not	a	probabilis-c	mixture	
• con-nuous	structural	rela-ons	
spa-al	rela-ons	in	scenes	
1.2m-above-and-0.5m-to-the-left(painting,	table)
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Paul Smolensky, Eric Rosen, Matthew Goldrick. 2020. Learning a gradient 
grammar of French liaison. Proceedings of the 2019 Annual Meeting on 
Phonology.     https://journals.linguisticsociety.org/proceedings/index.php/
amphonology/article/view/4680 .

https://journals.linguisticsociety.org/proceedings/index.php/amphonology/article/view/4680
https://journals.linguisticsociety.org/proceedings/index.php/amphonology/article/view/4680
https://journals.linguisticsociety.org/proceedings/index.php/amphonology/article/view/4680


composi-onal	structure	composed	of	
cons-tuents	each	of	which	binds	together	

• content:	what				—	‘filler’	
• form:						where		—	‘role’	(∼	rela-ons)	

cons-tuent	=	binding	filler:role		
substructures:	fillers	can	be	en-re	structures	
extrac-on	(unbinding):	(S₁:L	&	S₂:R)÷L	=	S₁	
composi-onality:				S	=	S₁:L	&	S₂:R	⇒	
	 	 f	(S)	=	F	(	f	(S÷L),	f	(S÷R)	)	
(systema-city:	filler-independence)

Filler:role decomposition

[lock	able]	=															—						&				—		

	 	 =	lock:														—						&		able:				—	

	 	 =	lock:L		&		able:R			

ordered	pair	structural	type	is	defined	by	roles:		

	 	 L	=															—							R	=				—	

ordered	pair	token	defined	by	binding	roles	to	fillers	

unlockable		=															[															]
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	[										]	lock 	[										]	able

	[										]								 	[										]								

	[										]								 	[										]								

	[																					]	un											lock able
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How	do	we	employ	the	power	of	con-nuous	vector	
representa-ons	to	achieve	composi-onal	
processing?	

First:	decompose	‘composi-onal	structure’.		
Then:	embed	in	vector	spaces	so	neural	opera-ons	
can	compose	and	extract	structure.
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How	do	we	employ	the	power	of	con-nuous	vector	
representa-ons	to	achieve	composi-onal	
processing?	

First:	decompose	‘composi-onal	structure’.		
Then:	embed	in	vector	spaces	so	neural	opera-ons	
can	compose	and	extract	structure.

Note	for	discussion:	standard	NNs	
learn	composi-onality	=	TPRs		!!
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How	do	we	employ	the	power	of	con-nuous	vector	
representa-ons	to	achieve	composi-onal	
processing?	
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composi-onal	structure	composed	of	
cons-tuents	each	of	which	binds	together	

• content:	what				—	‘filler’	
• form:						where		—	‘role’	(∼	rela-ons)	

cons-tuent	=	binding	filler:role		
substructures:	fillers	can	be	en-re	structures	
extrac-on	(unbinding):	(S₁:L	&	S₂:R)÷L	=	S₁	
composi-onality:				S	=	S₁:L	&	S₂:R	⇒	
	 	 f	(S)	=	F	(	f	(S÷L),	f	(S÷R)	)	
(systema-city:	filler-independence)

embed	fillers	as	vectors:	A	↦  			(standard)	
embed	roles	as	vectors:		L		↦  			(novel:	key)

A
L

bind	with	tensor	product:	A:L		↦  			
aggregate	with	addi-on:			
					A:L	&	B:R		↦  		

A ⊗ L

A ⊗ L + B ⊗ R

unbind	with	inner	product:	S÷L		↦	 	S ⋅ L

condi-ons	on	weight	matrices	compu-ng	f
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Tensor product, defined
Collec-on	of	all	products	of	elements	of	vectors
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Role	embedding

f3·r2

Tensor	Product	Representa-ons	(TPRs)	
Neurally-Embedded	Composi-onally-Structured	
Tensor	(NECST)	compu-ng
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Assessment:	Sufficiency	of	NECST	

• Computability	(in	principle)	
• Learnability	(in	practice)		
✦ function-application		

(β-reduction	in	λ-calculus)	
• bind	a	variable	to	a	value

NECST	Computa-on	
semantics	
interpretation	computation:	

frog ↦ mfrog  
big frog ↦ fbig(mfrog) = [λx. fbig(x)](mfrog) 

[λx.P(x) ⇒ Q(x)](a) = [P(a) ⇒ Q(a)]

β-reduction

Basic	opera-on	of	λ-calculus	[func-on	applica-on]:			
	 (λx.B)A
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Bλ x
↦ B

with all x 
replaced by A

λ x
xP xQ

⇒ ↦
aP aQ

⇒

Computable by neural network 
computation over TPRs!
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NECST	Computa-on	

syntactic	compositionality:	
Tree-Adjoining	Grammar	
✦	enables	the	level	of	complexity	characteristic	
of	human	natural	language	syntax

Tree adjoining
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Assessment:	Sufficiency	of	NECST	

• Computability	(in	principle)	
• Learnability	(in	practice)		
✦ function-application		

(β-reduction	in	λ-calculus)	
• bind	a	variable	to	a	value	

✦ tree	adjoining	(TAG)

Computable by neural network 
computation over TPRs!



Neurocompositionality↑	→	compositional	generalization↑	

On	simple	symbol-
manipula-on	tasks:	

Data	efficiency	and	success	
of	out-of-distribu-on	
generaliza-on	

NECST:	100%	at	700	examples	
Transformer:	∼90%	at	1500		

Likelihood	of	perfect	
learning	

NECST	vs	Transformer:	
improvement	>	100%
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Assessment:	Sufficiency	of	NECST	

• Computability	(in	principle)	
• Learnability	(in	practice)		

AI	domains	addressed	by	NECST	models	
• question-answering	from	Wikipedia	text	
• question-answering	on	simple	narratives		
• basic	propositional	reasoning	
• problem-solving	in	math,	programming	
• generating	text	summaries

2nd-genera-on	NECST	Models	

Architectures	
• RNNs	with	TPR	hidden	states	
• TPR	memory	for	tracking	en-ty	states,	with	
provided	mechanisms	for	retrieving,	upda-ng		

• Transformer	with	TPR	hidden	states	(TPT)
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