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Abstract: A set of hypotheses is formulated for a connectionist approach to cognitive modeling. These hypotheses are shown to be 
incompatible with the hypotheses underlying traditional cognitive models. The connectionist models considered are massively 
parallel numerical computational systems that are a kind of continuous dynamical system. The numerical variables in the system 
correspond semantically to fine-grained features below the level of the concepts consciously used to describe the task domain. The 
level of analysis is intermediate between those of symbolic cognitive models and neural models. The explanations of behavior 
provided are like those traditional in the physical sciences, unlike the explanations provided by symbolic models. 

Higher-level analyses of these connectionist models reveal subtle relations to symbolic models. Parallel connectionist memory and 
linguistic processes are hypothesized to give rise to processes that are describable at a higher level as sequential rule application. At 
the lower level, computation has the character of massively parallel satisfaction of soft numerical constraints; at the higher level, this 
can lead to competence characterizable by hard rules. Performance will typically deviate from this competence since behavior is 
achieved not by interpreting hard rules but by satisfying soft constraints. The result is a picture in which traditional and connectionist 
theoretical constructs collaborate intimately to provide an understanding of cognition. 
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1. Introduction 

In the past half-decade the connectionist approach to 
cognitive modeling has grown from an obscure cult claim- 
ing a few true believers to a movement so vigorous that 
recent meetings of the Cognitive Science Society have 
begun to look like connectionist pep rallies. With the rise 
of the connectionist movement come a number of funda- 
mental questions which are the subject of this target 
article. I begin with a brief description of connectionist 
models. 

1.1. Connectionist models. Connectionist models are large 
networks of simple parallel computing elements, each of 
which carries a numerical activation value which it com- 
putes from the values of neighboring elements in the 
network, using some simple numerical formula. The 
network elements, or units, influence each other's values 
through connections that carry a numerical strength, or 
weight. The influence of unit i on unit j is the activation 
value of unit i times the strength of the connection from i 
to j. Thus, if a unit has a positive activation value, its 
influence on a neighbor's value is positive if its weight to 
that neighbor is positive, and negative if the weight is 
negative. In an obvious neural allusion, connections car- 
rying positive weights are called excitatory and those 
carrying negative weights are inhibitory. 

In a typical connectionist model, input to the system is 
provided by imposing activation values on the input units 
of the network; these numerical values represent some 
encoding, or representation, of the input. The activation 
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on the input units propagates along the connections until 
some set of activation values emerges on the output units; 
these activation values encode the output the system has 
computed from the input. In between the input and 
output units there may be other units, often called hidden 
units, that participate in representing neither the input 
nor the output. 

The computation perfurmed by the network in trans- 
forming the input pattern of activity to the output pattern 
depends on the set of connection strengths; these weights 
are usually regarded as encoding the system’s knowledge. 
In this sense, the connection strengths play the role of the 
program in a conventional computer. Much of the allure 
of the connectionist approach is that many connectionist 
networks program themselves, that is, they have autono- 
mous procedures for tuning their weights to eventually 
perform some specific computation. Such learning pro- 
cedures often depend on training in which the network is 
presented with sample input/output pairs from the func- 
tion it is supposed to compute. In learning networks with 
hidden units, the network itself “decides” what computa- 
tions the hidden units will perform; because these units 
represent neither inputs nor outputs, they are never 

“told” what their values should be, even during training. 
In recent years connectionist models have been devel- 

oped for many tasks, encompassing the areas of vision, 
language processing, inference, and motor control. Nu- 

merous examples can be found in recent proceedings of 
the meetings of the Cognitive Science Society; Cognitive 
Science (1985); Feldman et al. (1985); Hinton and Ander- 
son (1981); McClelland, Rumelhart, and the PDP Re- 
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search Group (1986); Rumelhart, McClelland, and the 
PDP Research Group (1986). [See also Ballard “Cortical 
Connections and Parallel Processing” BBS 9(1) 1986. ] 

1.2. Goal of this target article. Given the rapid development 
in recent years of the connectionist approach to cognitive 

modeling, it is not yet an appropriate time for definitive 
assessments of the power and validity of the approach. 
The time seems right, however, for an attempt to articu- 
late the goals of the approach, the fundamental hypoth- 
eses it is testing, and the relations presumed to link it with 
the other theoretical frameworks of cognitive science. A 
coherent and plausible articulation of these fundamentals 
is the goal of this target article. Such an articulation is a 
nontrivial task, because the term “connectionist” encom- 
passes a number of rather disparate theoretical frame- 
works, all of them quite undeveloped. The connectionist 
framework I will articulate departs sufficiently radically 
from traditional approaches in that its relations to other 
parts of cognitive science are not simple. 

For the moment, let me call the formulation of the 
connectionist approach that I will offer PTC. I will not 
argue the scientific merit of PTC; that some version of 
connectionism along the lines of PTC constitutes a “prop- 
er description of processing” is argued elsewhere (e.g., in 
Rumelhart, McClelland & the PDP Research Group 
1986; McClelland, Rumelhart & the PDP Research 
Group 1986). Leaving aside the scientific merit of connec- 
tionist models, I want to argue here that PTC offers a 
“Proper Treatment of Connectionism”: a coherent for- 
mulation of the connectionist approach that puts it in 
contact with other theory in cognitive science in a particu- 
larly constructive way. PTC is intended as a formulation 
of connectionism that is at once strong enough to con- 
stitute a major cognitive hypothesis, comprehensive 
enough to face a number of difficult challenges, and sound 
enough to resist a number of objections in principle. If 
PTC succeeds in these goals, it will facilitate the real 
business at hand: Assessing the scientific adequacy of the 
connectionist approach, that is, determining whether the 
approach offers computational power adequate for human 
cognitive competence and appropriate computational 
mechanisms to accurately model human cognitive 
performance. 

PTC is a response to a number of positions that are 
being adopted concerning connectionism. — pro, con, and 
blandly ecumenical. These positions, which are fre- 
quently expressed orally but rarely set down in print, 
represent, I believe, failures of supporters and critics of 
the traditional approach truly to come to grips with each 
other's views. Advocates of the traditional approach to 
cognitive modeling and AI (artificial intelligence) are 
often willing to grant that connectionist systems are 
useful, perhaps even important, for modeling lower-level 
processes (e.g., early vision), or for fast and fault-tolerant 
implementation of conventional AI programs, or for un- 
derstanding how the brain might happen to implement 
Lisp. These ecumenical positions, I believe, fail to ac- 
knowledge the true challenge that connectionists are 
posing to the received view of cognition; PTC is an 
explicit formulation of this challenge. 

Other supporters of the traditional approach find the 
connectionist approach to be fatally flawed because it 
cannot offer anything new (since Universal Turing ma- 
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chines are, after all, “universal’), or because it cannot 
offer the kinds of explanations that cognitive science 
requires. Some dismiss connectionist models on the 
grounds that they are too neurally unfaithful. PTC has 
been designed to withstand these attacks. 

On the opposite side, most existing connectionist mod- 
els fail to come to grips with the traditional approach — 
partly through a neglect intended as benign. It is easy to 
read into the connectionist literature the claim that there 
is no role in cognitive science for traditional theoretical 
constructs such as rules, sequential processing, logic, 
rationality, and conceptual schemata or frames. PTC 
undertakes to assign these constructs their proper role in 
a connectionist paradigm for cognitive modeling. PTC 
also addresses certain foundational issues concerning 
mental states. 

I see no way of achieving the goals of PTC without 
adopting certain positions that will be regarded by a 
number of connectionists as premature or mistaken. 
These are inevitable consequences of the fact that the 
connectionist approach is still quite underdeveloped, and 
that the term “connectionist” has come to label a number 
of approaches that embody significantly conflicting as- 
sumptions. PTC is not intended to represent a consensus 
view of what the connectionist approach is or should be. 

It will perhaps enhance the clarity of the article if I 
attempt at the outset to make my position clear on the 
present value of connectionist models and their future 
potential. This article is not intended as a defense of all 
these views, though I will argue for a number of them, 
and the remainder have undoubtedly influenced the 
presentation. On the one hand, I believe that: 

(1) a. It is far from clear whether connectionist models have 
adequate computational power to perform high-level 
cognitive tasks: There are serious obstacles that must be 
overcome before connectionist computation can offer 
modelers power comparable to that of symbolic 
computation. 

. It is far from clear that connectionist models offer a 
sound basis for modeling human cognitive performance: 
The connectionist approach is quite difficult to put into 
detailed contact with empirical methodologies. 

>. Itis far from clear that connectionist models can contrib- 
ute to the study of human competence: Connectionist 
models are quite difficult to analyze for the kind of high- 
level properties required to inform the study of human 
competence. 

. It is far from clear that connectionist models, in some- 
thing like their present forms, can offer a sound basis for 
modeling neural computation: As will be explicitly ad- 
dressed in Section 4, there are many serious gaps 
between connectionist models and current views of 
important neural properties. 

. Even under the most successful scenario for connec- 

tionist cognitive science, many of the currently prac- 

ticed research strategies in cognitive science would 

remain viable and productive. 

On the other hand, I believe that: 

(1) f. It is very likely that the connectionist approach will 
contribute significant, long-lasting ideas to the rather 
impoverished theoretical repertoire of cognitive 
science. 



. Itis very likely that connectionist models will turn out to 
ofter contributions to the modeling of human cognitive 
performance on higher-level tasks that are at least as 
significant as those offered by traditional, symbolic, 
models. 

. Itis likely that the view of the competence/ performance 
distinction that arises from the connectionist approach 
will successfully heal a deep and ancient rift in the 
science and philosophy of mind. 

i. It is likely that connectionist models will offer the most 
significant progress of the past several millenia on the 
mind/body problem. 

j. Itis very likely that, given the impoverished theoretical 
repertoire of computational neuroscience, connec- 

tionist models will serve as an excellent stimulus to the 
development of models of neural computation that are 
significantly better than both current connectionist 
models and current neural models. 

. There is a reasonable chance that connectionist models 
will lead to the development of new somewhat-general- 
purpose self-programming, massively parallel analog 
computers, and a new theory of analog parallel com- 
putation: They may possibly even challenge the strong 
construal of Church’s Thesis as the claim that the class of 
well-defined computations is exhausted by those of 
Turing machines. 

1.3. Levels of analysis. Most of the foundational issues 
surrounding the connectionist approach turn, in one way 
or another, on the level of analysis adopted. The termi- 
nology, graphics, and discussion found in most connec- 
tionist papers strongly suggest that connectionist model- 
ing operates at the neural level. I will argue, however, 
that it is better not to construe the principles of cognition 
being explored in the connectionist approach as the 
principles of the neural level. Specification of the level of 
cognitive analysis adopted by PTC is a subtle matter 
which consumes much of this article. To be sure, the leve: 
of analysis adopted by PTC is lower than that of the 
traditional, symbolic paradigm; but, at least for the pre- 
sent, the level of PTC is more explicitly related to the 
level of the symbolic paradigm than it is to the neural 
level. For this reason I will call the paradigm for cognitive 
modeling proposed by PTC the subsymbolic paradigm. 

A few comments on terminology. I will refer to the 
traditional approach to cognitive modeling as the sym- 
bolic paradigm. Note that I will always use the term 
“symbolic paradigm” to refer to the traditional approach 
to cognitive modeling: the development of AI-like com- 
puter programs to serve as models of psychological per- 
formance. The symbolic paradigm in cognitive modeling 
has been articulated and defended by Newell and Simon 
(1976; Newell 1980), as well as by Fodor (1975; 1987), 
Pylyshyn (1984), and others. The fundamental hypoth- 
eses of this paradigm embrace most of mainstream AI, in 
addition to Al-based systems that are explicitly offered as 
models of human performance. The term “symbolic para- 
digm” is explicitly not intended to encompass compe- 
tence theories such as the formal theory of grammar; such 
competence theories bear deep relations to the symbolic 
paradigm but they are not a focus of attention in this 
paper. In particular, much of the work in formal lin- 
guistics differs from the symbolic paradigm in cognitive 
modeling in many of the same ways as the connectionist 
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approach I will consider; on a number of the dimensions I 
will use to divide the symbolic and subsymbolic para- 
digms, much linguistics research falls on the subsymbolic 
side. 

I have found it necessary to deal only with a subset of 
the symbolic and connectionist approaches in order to get 
beyond superficial, syntactic issues. On the symbolic 
side, I am limiting consideration to the Newell/ Simon- 
/Fodor/Pylyshyn view of cognition, and excluding, for 
example, the view adopted by much of linguistics; on the 
connectionist side, I will consider only a particular view, 
the “subsymbolic paradigm,” and exclude a number of 
competing connectionist perspectives. The only alter- 
native I see at this point is to characterize the symbolic 
and connectionist perspectives so diffusely that substan- 
tive analysis becomes impossible. 

In calling the traditional approach to cognitive model- 
ing the “symbolic paradigm,” I intend to emphasize that 
in this approach, cognitive descriptions are built of en- 
tities that are symbols both in the semantic sense of 
referring to external objects and in the syntactic sense of 
being operated upon by symbol manipulation. These 
manipulations model fundamental psychological pro- 
cesses in this approach to cognitive modeling. 

The name “subsymbolic paradigm” is intended to sug- 
gest cognitive descriptions built up of entities that corre- 
spond to constituents of the symbols used in the symbolic 
paradigm; these fine-grained constituents could be called 
subsymbols, and they are the activities of individual 
processing units in connectionist networks. Entities that 
are typically represented in the symbolic paradigm by 
symbols are typically represented in the subsymbolic 
paradigm by a large number of subsymbols. Along with 
this semantic distinction comes a syntactic distinction. 
Subsymbols are not operated upon by symbol manipula- 
tion: They participate in numerical — not symbolic — 
computation. Operations in the symbolic paradigm that 
consist of a single discrete operation (e.g., a memory 
fetch) are often achieved in the subsymbolic paradigm as 
the result of a large number of much finer-grained (nu- 
merical) operations. 

Since the level of cognitive analysis adopted by the 
subsymbolic paradigm for formulating connectionist 
models is lower than the level traditionally adopted by 
the symbolic paradigm, for the purposes of relating these 
two paradigms, it is often important to analyze connec- 
tionist models at a higher level; to amalgamate, so to 
speak, the subsymbols into symbols. Although the sym- 
bolic and subsymbolic paradigms each have their pre- 
ferred level of analysis, the cognitive models they offer 
can be described at multiple leveis. It is therefore useful 
to have distinct names for the levels: I will call the 
preferred level of the symbolic paradigm the conceptual 
level and that of the subsymbolic paradigm the subcon- 
ceptual level. These names are not ideal, but will be 
further motivated in the course of characterizing the 
levels. A primary goal of this article is to articulate a 
coherent set of hypotheses about the subconceptual level: 
the kind of cognitive descriptions that are used, the 
computational principles that. apply, and the relations 
between the subconceptual and both the symbolic and 
neural levels. 

The choice of level greatly constrains the appropriate 
formalism for analysis. Probably the most striking feature 
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of the connectionist approach is the change in formalism 
relative to the symbolic paradigm. Since the birth of 
cognitive science, language has provided the dominant 
theoretical model. Formal cognitive models have taken 
their structure from the syntax of formal languages, and 
their content from the semantics of natural language. The 
mind has been taken to be a machine for formal symbol 
manipulation, and the symbols manipulated have as- 
sumed essentially the same semantics as words of 
English. 

The subsymbolic paradigm challenges both the syntac- 
tic and semantic role of language in formal cognitive 
models. Section 2 formulates this challenge. Alternative 
fillers are described for the roles language has tradi- 
tionally played in cognitive science, and the new role left 
to language is delimited. The fundamental hypotheses 
defining the subsymbolic paradigm are formulated, and 
the challenge that nothing new is being offered is consid- 
ered. Section 4 considers the relation between the sub- 
symbolic paradigm and neuroscience; the challenge that 
connectionist models are too neurally unfaithful is ad- 
dressed. Section 5 presents the relations between analy- 
ses of cognition at the neural, subconceptual, and concep- 
tual levels. It also previews the remainder of the article, 
which deals with the relations between the subconcep- 
tual and conceptual levels; the types of explanations of 
behavior provided by the symbolic and subsymbolic 
paradigms are then discussed. Section 6 faces the chal- 
lenge of accounting for conscious, rule-guided behavior 
within the subsymbolic paradigm. Section 7 addresses 
the challenge of distinguishing cognitive from noncog- 
nitive systems at the subconceptual level. Various prop- 
erties of subsymbolic mental states, and the issue of 
rationality, are considered. Section 8 elaborates briefly 
on the computational principles that apply at the subcon- 
ceptual level. Section 9 discusses how higher, concep- 
tual-level descriptions of subsymbolic models approxi- 
mate symbolic models (under their conceptual-level 
descriptions). 

In this target article I have tried to typographically 
isolate concise formulations of the main points. Most of 
these numbered points serve to characterize the subsym- 
bolic paradigm, but a few define alternative points of 
view; to avoid confusion, the latter have been explicitly 
tagged by the phrase, To be rejected. 

2. Formalization of knowledge 

2.1. Cultural knowledge and conscious rule interpreta- 
tion.What is an appropriate formalization of the knowl- 
edge that cognitive agents possess and the means by 
which they use that knowledge to perform cognitive 
tasks? As a starting point, we can look to those knowledge 
formalizations that predate cognitive science. The most 
formalized knowledge is found in sciences like physics 
that rest on mathematical principles. Domain knowledge 
is formalized in linguistic structures such as “energy is 
conserved” (or an appropriate encryption), and logic 
formalizes the use of that knowledge to draw conclusions. 
Knowledge consists of axioms, and drawing conclusions 
consists of proving theorems. 
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This method of formulating knowledge and drawing 
conclusions has extremely valuable properties: 

(2) a. Public access: The knowledge is accessible to many 
people. 

b. Reliability: Different people (or the same person at 
different times) can reliably check whether conclusions 
have been validly reached. 

. Formality, bootstrapping, universality: The inferential 
operations require very little experience with the do- 
main to which the symbols refer. 

These three properties are important for science because 
it is a cultural activity. It is of limited social value to have 
knowledge that resides purely in one individual (2a). It is 
of questionable social value to have knowledge formu- 
lated in such a way that different users draw different 
conclusions (e.g., can’t agree that an experiment falsifies a 
theory) (2b). For cultural propagation of knowledge, it is 
helpful if novices with little or no experience with a task 
can be given a means for performing that task, and 
thereby a means for acquiring experience (2c). 

There are cultural activities other than science that 
have similar requirements. The laws of a nation and the 
rules of an organization are also linguistically formalized 
procedures for effecting action which different people can 
carry out with reasonable reliability. In all these cases, 
the goal is to create an abstract decision system that 
resides outside any single person. 

Thus, at the cultural level, the goal is to express 
knowledge in a form that can be executed reliably by 
different people, even inexperienced ones. We can view 
the top-level conscious processor of individual people as a 
virtual machine — the conscious rule interpreter — and we 
can view cultural knowledge as a program that runs on 
that machine. Linguistic formulations of knowledge are 
perfect for this purpose. The procedures that different 
people can reliably execute are explicit, step-by-step 
linguistic instructions. This is what has been formalized in 
the theory of effective procedures (Turing 1936). Thanks 
to property (2c), the top-level conscious human processor 
can be idealized as universal: capable of executing any 
effective procedure. The theory of effective procedures — 
the classical theory of computation (Hopcroft & Ullman, 
1979) — is physically manifest in the von Neumann (serial) 
computer. One can say that the von Neumann computer 
is a machine for automatically following the kinds of 
explicit instructions that people can fairly reliably follow — 
but much faster and with perfect reliability. 

Thus we can understand why the production system of 
comyutation theory, or more generally the von Neumann 
computer, has provided a successful model of how people 
execute instructions (e.g., models of novice physics prob- 
lem solving such as that of Larkin et al. 1980). In short, 
when people (e.g., novices) consciously and sequentially 
follow rules (such as those they have been taught), their 
cognitive processing is naturally modeled as the sequen- 
tial interpretation! of a linguistically formalized pro- 
cedure. The rules being followed are expressed in terms 
of the consciously accessible concepts with which the task 
domain is conceptualized. In this sense, the rules are 
formulated at the conceptual level of analysis. 

To sum up: 

(3) a. Rules formulated in natural language can provide an 
effective formalization of cultural knowledge. 



b. Conscious rule application can be modeled as the se- 
quential interpretation of such rules by a virtual ma- 
chine called the conscious rule interpreter. 

. These rules are formulated in terms of the concepts 
consciously used to describe the task domain — they are 
formulated at the conceptual level. 

2.2. Individual knowledge, skill, and intuition in the symbolic 
paradigm. The constraints on cultural knowledge for- 
malization are not the same as those on individual knowl- 
edge formalization. The intuitive knowledge in a physics 
expert or a native speaker may demand, for a truly 
accurate description, a formalism that is not a good one for 
cultural purposes. After all, the individual knowledge in 
an expert's head does not possess the properties (2) of 
cultural knowledge: It is not publically accessible or 
completely reliable, and it is completely dependent on 
ample experience. Individual knowledge is a program 
that runs on a virtual machine that need not be the same 
as the top-level conscious processor that runs the cultural 
knowledge. By definition, conclusions reached by intui- 
tion do not come from conscious application of rules, and 
intuitive processing need not have the same character as 
conscious rule application. 

What kinds of programs are responsible for behavior 
that is not conscious rule application? I will refer to the 
virtual machine that runs these programs as the intuitive 
processor. It is presumably responsible for all of animal 
behavior and a huge portion of human behavior: Percep- 
tion, practiced motor behavior, fluent linguistic behav- 
ior, intuition in problem solving and game playing — in 
short, practically all skilled performance. The trans- 
ference of responsibility from the conscious rule inter- 
preter to the intuitive processor during the acquisition of 
skill is one of the most striking and well-studied phe- 
nomena in cognitive science (Anderson 1981). An analysis 
of the formalization of knowledge must consider both the 
knowledge involved in novices’ conscious application of 
rules and the knowledge resident in experts’ intuition, as 
well as their relationship. 

An appealing possibility is this: 

(4) a. The programs running on the intuitive processor consist 
of linguistically formalized rules that are sequentially 
interpreted. (To be rejected.) 

This has traditionally been the assumption of cognitive 
science. Native speakers are unconsciously interpreting 
rules, as are physics experts when they are intuiting 
answers to problems. Artificial intelligence systems for 
natural language processing and problem solving are 
programs written in a formal language for the symbolic 
description of procedures for manipulating symbols. 

To the syntactic hypothesis (4a) a semantic one corre- 
sponds: 

(4) b. The programs running on the intuitive processor are 
composed of elements, that is, symbols, referring to 
essentially the same concepts as the ones used to con- 
sciously conceptualize the task domain. (To be rejected.) 

This applies to production system models in which the 
productions representing expert knowledge are compiled 
versions of those of the novice (Anderson 1983; Lewis 
1978) and to the bulk of AI programs. 
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Hypotheses (4a) and (4b) together comprise: 

(4) The unconscious rule interpretation hypothesis: (To be 
rejected.) 
The programs running on the intuitive processor have a 
syntax and semantics comparable to those running on 
the conscious rule interpreter. 

This hypothesis has provided the foundation for the 
symbolic paradigm for cognitive modeling. Cognitive 
models of both conscious rule application and intuitive 
processing have been programs constructed of entities 
which are symbols both in the syntactic sense of being 
operated on by symbol manipulation and in the semantic 
sense of (4b). Because these symbols have the conceptual 
semantics of (4b), I am calling the level of analysis at 
which these programs provide cognitive models the con- 
ceptual level. 

2.3. The subsymbolic paradigm and intuition. The hypoth- 
esis of unconscious rule interpretation (4) is an attractive 
possibility which a connectionist approach to cognitive 
modeling rejects. Since my purpose here is to formulate 
rather than argue the scientific merits of a connectionist 
approach, I will not argue against (4) here. I will point out 
only that in general, connectionists do not casually reject 
(4). Several of today’s leading connectionist researchers 
were intimately involved with serious and longstanding 
attempts to make (4) serve the needs of cognitive sci- 
ence.2 Connectionists tend to reject (4) because they find 
the consequences that have actually resulted from its 
acceptance to be quite unsatisfactory, for a number of 
quite independent reasons, including: 

(5) a. Actual AI systems built on hypothesis (4) seem too 
brittle, too inflexible, to model true human expertise. 

b. The process of articulating expert knowledge in rules 
seems impractical for many important domains (e.g., 
common sense). 

. Hypothesis (4) has contributed essentially no insight 
into how knowledge is represented in the brain. 

What motivates the pursuit of connectionist alternatives 
to (4) is a hunch that such alternatives will better serve the 
goals of cognitive science. Substantial empirical assess- 
ment of this hunch is probably at least a decade away. One 
possible alternative to (4a) is: 

(6) The neural architecture hypothesis: (To be rejected.) 
The intuitive processor for a particular task uses the 
same architecture that the brain uses for that task. 

Whatever appeal this hypothesis might have, it seems 
incapable in practice of supporting the needs of the vast 
majority of cognitive models. We simply do not know 
what architecture the brain uses for performing most 
cognitive tasks. There may be some exceptions (such as 
visual and spatial tasks), but for problem solving, lan- 
guage, and many others (6) simply cannot do the neces- 
sary work at the present time. 

These points and others relating to the neural level will 
be considered in more detail in Section 4. For now the 
point is simply that characterizing the level of analysis of 
connectionist modeling is not a matter of simply identify- 
ing it with the neural level. While the level of analysis 
adopted by most connectionist cognitive models is not the 
conceptual one, it is also not the neural level. [See also 
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Anderson: “Methodologies for Studying Human Knowl- 
edge” BBS 10(3) 1987.] 

The goal now is to formulate a connectionist alternative 
to (4) that, unlike (6), provides a viable basis for cognitive 
modeling. A first, crude approximation to this hypothesis 
is: 

(7) The intuitive processor has a certain kind of connec- 
tionist architecture (which abstractly models a few of the 
most general features of neural networks). (To be 
elaborated.) 

Postponing consideration of the neural issues to Section 
4, we now consider the relevant kind of connectionist 
architecture. 

The view of the connectionist architecture I will adopt 
is the following (for further treatment of this viewpoint, 
see Smolensky 1986b). The numerical activity values of 
all the processors in the network form a large state vector. 
The interactions of the processors, the equations govern- 
ing how the activity vector changes over time as pro- 
cessors respond to one another's values, is an activation 
evolution equation. This evolution equation governing 
the mutual interactions of the processors involves the 
connection weights: numerical parameters which deter- 
mine the direction and magnitude of the influence of one 
activation value on another. The activation equation is a 
differential equation (usually approximated by the finite 
difference equation that arises from discrete time slices; 
the issue of discrete approximation is taken up in Section 
8.1). In learning systems, the connection weights change 
during training according to the learning rule, which is 
another differential equation: the connection evolution 
equation. 

Knowledge in a connectionist system lies in its connec- 
tion strengths. Thus, for the first part of our elaboration 
on (7) we have the following alternative to (4a): 

(8) a. The connectionist dynamical system hypothesis: 
The state of the intuitive processor at any moment is 
precisely defined by a vector of numerical values (one 
for each unit). The dynamics of the intuitive processor 
are governed by a differential equation. The numerical 
parameters in this equation constitute the processor's 
program or knowledge. In learning systems, these pa- 
rameters change according to another differential 
equation. 

This hypothesis states that the intuitive processor is a 
certain kind of dynamical system: Like the dynamical 
systems traditionally studied in physics, the state of the 
system is a numerical vector evolving in time according to 
differential evolution equations. The special properties 
that distinguish this kind of dynamical system — a connec- 
tionist dynamical system — are only vaguely described in 
(8a). A much more precise specification is needed. It is 
premature at this point to commit oneself to such a 
specification, but one large class of subsymbolic models is 
that of quasilinear dynamical systems, explicitly dis- 
cussed in Smolensky (1986b) and Rumelhart, Hinton, and 
Williams (1986). Each unit in a quasilinear system com- 
putes its value by first calculating the weighted sum of its 
inputs from other units and then transforming this sum 
with a nonlinear function. An important goal of the 
subsymbolic paradigm is to characterize the computa- 
tional properties of various kinds of connectionist dynam- 
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ical systems (such as quasilinear systems) and thereby 
determine which kinds provide appropriate models of 
various types of cognitive processes. 

The connectionist dynamical system hypothesis (8a) 
provides a connectionist alternative to the syntactic hy- 
pothesis (4a) of the symbolic paradigm. We now need a 
semantic hypothesis compatible with (8a) to replace (4b). 
The question is: What does a unit’s value mean? The most 
straightforward possibility is that the semantics of each 
unit is comparable to that of a word in natural language; 
each unit represents such a concept, and the connection 
strengths between units reflect the degree of association 
between the concepts. 

(9) The conceptual unit hypothesis: (To be rejected.) 
Individual intuitive processor elements — individual 
units — have essentially the same semantics as the 
conscious rule interpreter’s elements, namely, words of 

natural language. 

But (8a) and (9) make an infertile couple. Activation of 
concepts spreading along degree of association links may 
be adequate for modeling simple aspects of cognition — 
such as relative times for naming words or the relative 
probabilities of perceiving letters in various contexts — 
but it cannot be adequate for complex tasks such as 
question answering or grammaticality judgments. The 
relevant structures cannot even be feasibly represented 
in such a network, let alone effectively processed. 

Great computational power must be present in the 
intuitive processor to deal with the many cognitive pro- 
cesses that are extremely complex when described at the 
conceptual level. The symbolic paradigm, based on hy- 
pothesis (4), gets its power by allowing highly complex, 
essentially arbitrary, operations on symbols with concep- 
tual-level semantics: simple semantics, complex opera- 
tions. If the operations are required to be as simple as 
those allowed by hypothesis (8a), we cannot get away with 
a semantics as simple as that of (9). A semantics compati- 
ble with (8a) must be more complicated: 

(8) b. The subconceptual unit hypothesis: 
The entities in the intuitive processor with the seman- 
tics of conscious concepts of the task domain are com- 
plex patterns of activity over many units. Each unit 
participates in many such patterns. 

(See several of the papers in Hinton & Anderson 1981; 
Hinton, McClelland & Rumelhart 1986; the neural coun- 
terpart is associated with Hebb 1949; Lashley 1950, about 
which see Feldman 1986.) The interactions between 
individual units are simple, but these units do not have 
conceptual semantics: they are subconceptual. The in- 
teractions between the entities with conceptual seman- 
tics, interactions between complex patterns of activity, 
are not at all simple. Interactions at the level of activity 
patterns are not directly described by the formal defini- 
tion of a subsymbolic model; they must be computed by 
the analyst. Typically, these interactions can be com- 
puted only approximately. In other words, there will 
generally be no precisely valid, complete, computable 
formal principles at the conceptual level; such principles 
exist only at the level of individual units — the subconcep- 
tual level. 

(8) c. The subconceptual level hypothesis: 
Complete, formal, and precise descriptions of the intu- 



itive processor are generally tractable not at the concep- 
tual level, but only at the subconceptual level. 

In (8c), the qualification “complete, formal, and precise” 
is important: Conceptual-level descriptions of the intu- 
itive processor's performance can be derived from the 
subconceptual description, but, unlike the description at 
the subconceptual level, the conceptual-level descrip- 
tions will be either incomplete (describing only certain 
aspects of the processing) or informal (describing complex 
behaviors in, say, qualitative terms) or imprecise (de- 
scribing the performance up to certain approximations or 
idealizations such as “competence” idealizations away 
from actual performance). Explicit examples of each of 
these kinds of conceptual-level descriptions of subsym- 
bolic systems will be considered in Section 9. 

Hypotheses (8a—c) can be summarized as: 

(8) The subsymbolic hypothesis: 
The intuitive processor is a subconceptual connectionist 
dynamical system that does not admit a complete, for- 
mal, and precise conceptual-level description. 

This hypothesis is the cornerstone of the subsymbolic 
paradigm.4 

2.4. The incompatibility of the symbolic and subsymbolic 
paradigms. | will now show that the symbolic and subsym- 
bolic paradigms, as formulated above, are incompatible — 
that hypotheses (4) and (8) about the syntax and semantics 
of the intuitive processor are not mutually consistent. 
This issue requires care, because it is we"! known that one 
virtual machine can often be implemented in another, 
that a program written for one machine can be translated 
into a program for the other. The attempt to distinguish 
subsymbolic and symbolic computation might well be 
futile if each can simulate the other. After all, a digital 
computer is in reality some sort of dynamical system 
simulating a von Neumann automaton, and in turn, 
digital computers are usually used to simulate connec- 
tionist models. Thus it seems possible that the symbolic 
and subsymbolic hypotheses (4) and (8) are both correct: 
The intuitive processor can be regarded as a virtual 
machine for sequentially interpreting rules on one level 
and as a connectionist machine on a lower level. 

This possibility fits comfortably within the symbolic 
paradigm, under a formulation such as: 

(10) Valid connectionist models are merely implementa- 
tions, for a certain kind of parallel hardware, of sym- 
bolic programs that provide exact and complete 
accounts of behavior at the conceptual level. (To be 
rejected.) 

However (10) contradicts hypothesis (8c), and is thus 
incompatible with the subsymbolic paradigm. The sym- 
bolic programs that (4) hypothesizes for the intuitive 
processor could indeed be translated for a connectionist 
machine; but the translated programs would not be the 
kind of subsymbolic program that (8) hypothesizes. If (10) 
is correct, (8) is wrong; at the very least, (8c) would have to 
be removed from the defining hypothesis of the subsym- 
bolic paradigm, weakening it to the point that connec- 
tionist modeling does become mere implementation. 
Such an outcome would constitute a genuine defeat of a 
research program that I believe many connectionists are 
pursuing. 

Smolensky: Proper treatment of connectionism 

What about the reverse relationship, where a symbolic 
program is used to implement a subsymbolic system? 
Here it is crucial to realize that the symbols in such 
programs represent the activation values of units and the 
strengths of connections. By hypothesis (8b), these do not 
have conceptual semantics, and thus hypothesis (4b) is 
violated. The subsymbolic programs that (8) hypothesizes 
for the intuitive processor can be translated for a von 
Neumann machine, but the translated programs are not 
the kind of symbolic program that (4) hypothesizes. 

These arguments show that unless the hypotheses of 
the symbolic and subsymbolic paradigms are formulated 
with some care, the substance of the scientific issue at 
stake can easily be missed. It is well known that von 
Neumann machines and connectionist networks can sim- 
ulate each other. This fact leads some people to adopt the 
position that the connectionist approach cannot offer 
anything fundamentally new because we already have 
Turing machines and, following Church's Thesis, reason 
to believe that, when it comes to computation, Turing 
machines are everything. This position, however, mis- 
takes the issue for cognitive science to be the purely 
syntactic question of whether mental programs are writ- 
ten for Turing/von Neumann machines or connectionist 
machines. This is a nonissue. If one cavalierly charac- 
terizes the two approaches only syntactically, using (4a) 
and (8a) alone, then indeed the issue — connectionist or 
not connectionist — appears to be “one of Al's wonderful 
red herrings.”> 

It is a mistake to claim that the connectionist approach 
has nothing new to offer cognitive science. The issue at 
stake is a central one: Does the complete formal account 
of cognition lie at the conceptual level? The position taken 
by the subsymbolic paradigm is: No — it lies at the 
subconceptual level. 

3. Representation at the subconceptual level 

Having hypothesized the existence of a subconceptual 
level, we must now consider its nature. Hypothesis (8b) 
leaves open important questions about the semantics of 
subsymbolic systems. What kind of subconceptual fea- 
tures do the units in the intuitive processor represent? 
Which activity patterns actually correspond to particular 
concepts or elements of the problem domain? 

There are no systematic or general answers to these 
questions at the present time; seeking answers is one of 

the principal tasks for the subsymbolic research para- 
digm. At present, each individual subsymbolic model 
adopts particular procedures for relating patterns of ac- 
tivity — activity vectors — to the conceptual-level descrip- 
tions of inputs and outputs that define the model's task. 
The vectors chosen are often values of fine-grained fea- 
tures of the inputs and outputs, based on some preexist- 
ing theoretical analysis of the domain. For example, for 
the task studied by Rumelhart and McClelland (1986), 
transforming root phonetic forms of English verbs to their 
past-tense forms, the input and output phonetic strings 
are represented as vectors of values for context-depen- 
dent binary phonetic features. The task description at the 
conceptual level involves consciously available concepts 
such as the words “go” and “went,” while the subconcep- 
tual level used by the model involves a very large number 
of fine-grained features such as “roundedness preceded 
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by frontalness and followed by backness.” The represen- 
tation of “go” is a large pattern of activity over these 
features. 

Substantive progress in subsymbolic cognitive science 
requires that systematic commitments be made to vec- 
torial representations for individual cognitive domains. It 
is important to develop mathematical or empirical meth- 
odologies that can adequately constrain these commit- 
ments. The vectors chosen to represent inputs and out- 
puts crucially affect a model’s predictions, since the 
generalizations the model makes are largely determined 
by the similarity structure of the chosen vectors. Unlike 
symbolic tokens, these vectors lie in a topological space in 
which some are close together and others far apart. 

What kinds of methodologies might be used to con- 
strain the representation at the subconceptual level? The 
methodology used by Rumelhart and McClelland (1986) 
in the past-tense model is one that has been fairly widely 
practiced, particularly in models of language processing: 
Representational features are borrowed from existing 
theoretical analyses of the domain and adapted (generally 
in somewhat ad hoc ways) to meet the needs of connec- 
tionist modeling. This methodology clearly renders the 
subsymbolic approach dependent on other research para- 
digms in the cognitive sciences and suggests that, cer- 
tainly in the short term, the subsymbolic paradigm can- 
not replace these other research paradigms. (This is a 
theme I will return to in the conclusion of the paper.) 

A second possible theoretical methodology for study- 
ing subconceptual representation relates to the learning 
procedures that can train hidden units in connectionist 
networks. Hidden units support internal representations 
of elements of the problem domain, and networks that 
train their hidden units are in effect learning effective 
subconceptual representations of the domain. If we can 
analyze the representations that such networks develop, 
we can perhaps obtain principles of subconceptual repre- 
sentation for various problem domains. 

A third class of methodology views the task of con- 
straining subconceptual models as the calibration of con- 
nectionist models to the human cognitive system. The 
problem is to determine what vectors should be assigned 
to represent various aspects of the domain so that the 
resulting behavior of the connectionist model matches 
human behavior. Powerful mathematical tools are 
needed for relating the overall behavior of the network to 
the choice of representational vectors; ideally, these tools 
should allow us to invert the mapping from representa- 
tions to behavior so that by starting with a mass of data on 
human performance we can turn a mathematical crank 
and have representational vectors pop out. An example of 
this general type of tool is the technique of multidimen- 
sional scaling (Shepard 1962), which allows data on 
human judgments of the similarity between pairs of items 
in some set to be turned into vectors for representing 
those items (in a sense). The subsymbolic paradigm needs 
tools such as a version of multidimensional scaling based 
on a connectionist model of the process of producing 
similarity judgments. 

Each of these methodologies poses serious research 
challenges. Most of these challenges are currently being 
pursued, so far with at best modest success. In the first 
approach, systematic principles must be developed for 
adapting to the connectionist context the featural analyses 
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of domains that have emerged from traditional, noncon- 
nectionist paradigms. These principles must reflect fun- 
damental properties of connectionist computation, for 
otherwise, the hypothesis of connectionist computation is 
doing no work in the study of mental representation. In 
the second methodology, principles must be discovered 
for the representations learned by hidden units, and in 
the third methodology, principles must be worked out for 
relating choices of representational vectors to overall 
system behavior. These are challenging mathematical 
problems on which the ultimate success of the subsym- 
bolic paradigm rests. Sections 8 and 9 discuss some 
results related to these mathematical problems, but they 
are far from strong enough to carry the necessary weight. 

The next two sections discuss the relation between the 
subconceptual level and other levels: The relation to the 
neural levels is addressed in Section 4, and the relation to 
the conceptual level is taken up in Section 5. 

4. The subconceptual and neural levels 

The discussion in the preceding section overlooks an 
obvious methodology for constraining subconceptual rep- 
resentations — just look at how the brain does it. This 
brings us back to the parenthetical comment in (7) and the 
general issue of the relation between the subconceptual 
and neural levels.® 

The relation between the subconceptual and neural 
levels can be addressed in both syntactic and semantic 
terms. The semantic question is the one just raised: How 
do representations of cognitive domains as patterns of 
activity over subconceptual units in the network models 
of the subsymbolic paradigm relate to representations 
over neurons in the brain? The syntactic question is: How 
does the processing architecture adopted by networks in 
the subsymbolic paradigm relate to the processing archi- 
tecture of the brain? 

There is not really much to say about the semantic 
question because so little is known about neural repre- 
sentation of higher cognitive domains. When it comes to 
connectionist modeling of say, language processing, the 
“just look at how the brain does it” methodology doesn’t 
take one very far towards the goal of constructing a 
network that does the task at all. Thus it is unavoidable 
that, for the time being, in subsymbolic models of higher 
processes, the semantics of network units are much more 
directly related to conceptual level accounts of these 
processes than to any neural account. Semantically, the 
subconceptual level seems at present rather close to the 
conceptual level, while we have little ground for believ- 
ing it to be close to the neural level. 

This conclusion is at odds with the commonly held view 
that connectionist models are neural models. That view 
presumably reflects a bias against semantic considera- 
tions in favor of syntactic ones. If one looks only at 
processing mechanisms, the computation performed by 
subsymbolic models seems much closer to that of the 
brain than to that of symbolic models. This suggests that 
syntactically, the subconceptual level is closer to the 
neural level than to the conceptual level. 

Let us take then the syntactic question: Is the process- 
ing architecture adopted by subsymbolic models (8a) 
well-suited for describing processing at the neural level? 



Table 1 presents some of the relations between the 
architectures. The left column lists currently plausible 
features of some of the most general aspects of the neural 
architecture, considered at the level of neurons (Crick & 
Asanuma 1986). The right column lists the corresponding 
architectural features of the connectionist dynamical sys- 
tems typically used in subsymbolic models. In the center 
— each hit has been indicated by a + and each miss 
ya-. 
In Table 1 the loose correspondence assumed is be- 

tween neurons and units, between synapses and connec- 
tions. It is not clear how to make this correspondence 
precise. Does the activity of a unit correspond to the 
membrane potential at the cell body? Or the time-aver- 
aged firing rate of the neuron? Or the population-aver- 
aged firing rate of many neurons? Since the integraticn of 
signals between dendritic trees is probably more like the 
linear integration appearing in quasilinear dynamical 

Table 1. Relations between the neural 
and subsumbolic architectures 

Cerebral cortex Connectionist dynamical 
systems 

State defined by continuous + State defined by continuous 
numerical variables (poten- 
tials, synaptic areas, . . .) 

numerical variables (activa- 
tions, connection strengths) 

State variables change con- + State variables change con- 
tinuously in time tinuously in time 

Interneuron interaction pa- + Interunit interaction para- 

rameters changeable; seat of | meters changeable; seat of 
knowledge knowledge 

Huge number of state vari- 
ables 

High interactional complex- 
ity (highly nonhomogeneous 
interactions) 

Neurons located in 2+ 1-d 
space 

have dense connectivity 
to nearby neurons; 

have geometrically 
mapped connectivity to 
distant neurons 

Large number of state 
variables 

High interactional complex- 
ity (highly nonhomogeneous 
interactions) 

Units have no spatial location 

uniformly dense 

connections 

Synapses located in 3-d 
space; 

locations strongly affect 
signal interactions 

Distal projections between 
areas have intricate topol- 

ogy | 

Distal interactions mediated 
by discrete signals 

Connections have no spatial 
location 

Distal projections between 
node pools have simple to- 

pology 

All interactions nondiscrete 

Intricate signal integration 
at single neuron 

Signal integration is linear 

Numerous signal types — Single signal type 

Smolensky: Proper treatment of connectionism 

systems than is the integration of synaptic signals on a 
dendrite, would it not be better to view a connection not 
as an individual synaptic contact but rather as an aggre- 
gate contact on an entire dendritic tree? 

Given the difficulty of precisely stating the neural 
counterpart of components of subsymbolic models, and 
given the significant number of misses, even in the very 
general properties considered in Table 1, it seems advis- 
able to keep the question open of the detailed relation 
between cognitive descriptions at the subconceptual and 
neural levels. There seems no denying, however, that the 
subconceptual level is significantly closer to the neural 
level than is the conceptual level: Symbolic models pos- 
sess even fewer similarities with the brain than those 
indicated in Table 1. 

The subconceptual level ignores a great number of 
features of the neural level that are probably extremely 
important to understanding how the brain computes. 
Nonetheless, the subconceptual level does incorporate a 
number of features of neural computation that are almost 
certainly extremely important to understanding how the 
brain computes. The general principles of computation at 
the subconceptual level — computation in high-dimen- 
sional, high-complexity dynamical systems — must apply 
to computation in the brain; these principles are likely to 
be necessary, if not sufficient, to understand neural 
computation. And while subconceptual principles are not 
unambiguously and immediately applicable to neural 
systems, they are certainly more readily applicable than 
the principles of symbolic computation. 

In sum: 

(11) The fundamental level of the subsymbolic paradigm, 
the subconceptual level, lies between the neural and 
conceptual levels. 

As stated earlier, on semantic measures, the subsymbolic 
level seems closer to the conceptual level, whereas on 
syntactic measures, it seems closer to the neural level. It 
remains to be seen whether, as the subsymbolic paradigm 
develops, this situation will sort itself out. Mathematical 
techniques like those discussed in the previous section 
may yield insights into subsymbolic representation that 
will increase the semantic distance between the subcon- 
ceptual and conceptual levels. There are already signifi- 
cant indications that as new insights into subsymbolic 
computation are emerging, and additional information 
processing power is being added to subsymbolic models, 
the syntactic distance between the subconceptual and 
neural levels is increasing. In the drive for more computa- 
tional power, architectural decisions seem to be driven 
more and more by mathematical considerations and less 
and less by neural ones.7 

Once (11) is accepted, the proper place of subsymbolic 
models in cognitive science will be clarified. It is common 
to hear dismissals of a particular subsymbolic model 
because it is not immediately apparent how to implement 
it precisely in neural hardware, or because certain neural 
features are absent from the model. We can now identify 
two fallacies in such a dismissal. First, following (11): 
Subsymbolic models should not be viewed as neural 
models. If the subsymbolic paradigm proves valid, the 
best subsymbolic models of a cognitive process should 
one day be shown to be some reasonable higher-level 
approximation to the neural system supporting that pro- 
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cess. This provides a heuristic that favors subsymbolic 
models that seem more likely to be reducible to the 
neural level. But this heuristic is an extremely weak one 
given how difficult such a judgment must be with the 
current confusion about the precise neural correlates of 
units and connections, and the current state of both 
empirical and theoretical neuroscience. 

The second fallacy in dismissing a particular subsym- 
bolic model because of neural unfaithfulness rests on a 
failure to recognize the role of individual models in the 
subsymbolic paradigm. A model can make a valuable 
contribution by providing evidence for general principles 
that are characteristic of a broad class of subsymbolic 
systems. The potential value of “ablation” studies of the 
NETrtalk text-to-speech system (Sejnowski & Rosenberg 
1986), for example, does not depend entirely on the 
neural faithfulness of the model, or even on its psycholog- 
ical taithfulness. NETtalk is a subsymbolic system that 
performs a complex task. What happens to its perfor- 
mance when internal parts are damaged? This provides a 
significant clue to the general principles of degradation in 
all complex subsymbolic systems: Principles that will 
apply to future systems that are more faithful as models. 

There are, of course, many neural models that do take 
many of the constraints of neural organization seriously, 
and for which the analogue of Table 1 would show nearly 
all hits. But we are concerned here with connectionist 
models for performing cognitive tasks, and these models 
typically possess the features displayed in Table 1, with 
perhaps one or two deviations. The claim is not that 
neural models don’t exist, but rather that they should not 
be confused with subsymbolic models. 
Why is it that neural models of cognitive processes are, 

generally speaking, currently not feasible? The problem 
is not an insufficient quantity of data about the brain. The 
problem, it seems, is that the data are generally of the 
wrong kind for cognitive modeling. Our information 
about the nervous system tends to describe its structure, 
not its dynamic behavior. Subsymbolic systems are dy- 
namical systems with certain kinds of differential equa- 
tions governing their dynamics. If we knew which dy- 
namical variables in the neural system for some cognitive 
task were the critical ones for performing that task, and 
what the “equations of motion” were for those variables, 
we could use that information to build neurally faithful 
cognitive models. But generally what we know instead 
are endless static properties of how the hardware is 
arranged. Without knowing which (if any) of these struc- 
tures support relevant dynamical processes, and what 
equations govern those processes, we are in a position 

comparable to someone attempting to model the solar 
system, armed with voluminous data on the colored 
bands of the planets but with no knowledge of Newton’s 
Laws. 

To summarize: 

(12) a. Unlike the symbolic architecture, the subsymbolic 
architecture possesses a number of the most general 
features of the neural architecture. 

. However, the subsymbolic architecture lacks a 
number of the more detailed but still quite general 
features of the neural architecture; the subconceptual 
level of analysis is higher than the neural level. 

. For most cognitive functions, neuroscience cannot 
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provide the relevant information to specify a cognitive 
model at the neural level. 

d. The general cognitive principles of the subconceptual 
level will probably be important contributors to future 
discoveries of those specifications of neural computa- 
tions that we now lack. 

5. Reduction of cognition to the subconceptual 
level 

The previous section considered the relationship be- 
tween the fundamental level of the subsymbolic para- 
digm — the subconceptual level — and the neural level. 
The remainder of this article will focus on relations 
between the subconceptual and conceptual levels; these 
have so far only been touched upon briefly (in (8c)). 
Before proceeding, however, it is worth summarizing the 
relationships between the levels, including those that will 
be discussed in the remainder of the article. 

Imagine three physical systems: a brain that is execut- 
ing some cognitive process, a massively parallel connec- 
tionist computer running a subsymbolic model of that 
process, and a von Neumann computer running a sym- 
bolic model of the same process. The cognitive process 
may involve conscious rule application, intuition, or a 
combination of the two. According to the subsymbolic 
paradigm, here are the relationships: 

(13) a. Describing the brain at the neural level gives a neural 
model. 

b. Describing the brain approximately, at a higher level — 
the subconceptual level — yields, to a good approxima- 
tion, the model running on the connectionist comput- 
er, when it too is described at the subconceptual level. 

(At this point, this is a goal for future research. It could 
turn out that the degree of approximation here is only 
rough; this would still be consistent with the subsym- 
bolic paradigm.) 

. We can try to describe the connectionist computer at a 
higher level — the conceptual level — by using the 
patterns of activity that have conceptual semantics. If 
the cognitive process being executed is conscious rule 
application, we will be able to carry out this concep- 
tual-level analysis with reasonable precision, and will 
end up with a description that closely matches the 
symbolic computer program running on the von Neu- 
mann machine. 

. If the process being executed is an intuitive process, 
we will be unable to carry out the conceptual-level 
description of the connectionist machine precisely. 
Nonetheless, we will be able to produce various ap- 
proximate conceptual-level descriptions that corre- 
spond to the symbolic computer program running on 
the von Neumann machine in various ways. 

For a cognitive process involving both intuition and 
conscious rule application, (13c) and (13d) will each apply 
to certain aspects of the process. 

The relationships (13a) and (13b) were discussed in the 
previous section. The relationship (13c) between a sub- 
symbolic implementation of the conscious rule interpret- 
er and a symbolic implementation is discussed in Section 
6. The relations (13d) between subsymbolic and symbolic 
accounts of intuitive processing are considered in Section 
9. These relations hinge on certain subsymbolic computa- 
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Table 2. Three cognitive systems and three levels of description 

Level (process) 

Conceptual 
(intuition) 

(conscious rule application) 

Subconceptual 

Neural exact 

tional principles operative at the subconceptual level 
(13b); these are briefly discussed in Section 8. These 
principles are of a new kind for cognitive science, giving 
rise to the foundational considerations taken up in Section 

The relationships in (13) can be more clearly under- 
stood by reintroducing the concept of “virtual machine.” 
If we take one of the three physical systems and describe 
its processing at a certain level of analysis, we get a virtual 
machine that I will denote “system,...;. Then (13) can be 
written: 

(14) a. brain...) = neural model 
b. brain,...conceptual = connectionist,,),onceptual 

ce. connectionist.,,,ceptual ~ Von Neumann 
scious rule application) 

d. connectionist 
(intuition) 

‘conceptual (con- 

von Neumann,,,,eptual conceptual 

Here, the symbol = means “equals to a good approxima- 
tion” and ~ means “equals to a crude approximation.” 
The two nearly equal virtual machines in (14c) both 
describe what I have been calling the “conscious rule 
interpreter.” The two roughly similar virtual machines in 
(14d) provide the two paradigms’ descriptions of the 
intuitive processor at the conceptual level. 

Table 2 indicates these relationships and also the de- 
gree of exactness to which each system can be described 
at each level — the degree of precision to which each 
virtual machine is defined. The levels included in Table 2 
are those relevant to predicting high-level behavior. Of 
course each system can also be described at lower levels, 
all the way down to elementary particles. However, 
levels below an exactly describable level can be ignored 
from the point of view of predicting high-level behavior, 
since it is possible (in principle) to do the prediction at the 
highest level that can be exactly described (it is presum- 
ably much harder to do the same at lower levels). This is 
why in the symbolic paradigm any descriptions below the 
conceptual level are not viewed as significant. For model- 
ing high-level behavior, how the symbol manipulation 
happens to be implemented can be ignored — it is not a 
relevant part of the cognitive model. In a subsymbolic 
model, exact behavioral prediction must be performed at 
the subconceptual level, but how the units happen to be 
implemented is not relevant. 

The relation between the conceptual level and lower 
levels is fundamentally different in the subsymbolic and 
symbolic paradigms. This leads to important differences 
in the kind of explanations the paradigms offer of concep- 
tual-level behavior, and the kind of reduction used in 
these explanations. A symbolic model is a system of 

good approximation 

Cognitive system 

Subsymbolic Symbolic 

rough approximation ~ exact 

good approximation os 
exact 

exact 

interacting processes, all with the same conceptual-level 
semantics as the task behavior being explained. Adopting 
the terminology of Haugeland (1978), this systematic 
explanation relies on a systematic reduction of the behav- 
ior that involves no shift of semantic domain or dimen- 
sion. Thus a game-playing program is composed of sub- 
programs that generate possible moves, evaluate them, 
and so on. In the symbolic paradigm, these systematic 
reductions play the major role in explanation. The lowest- 
level processes in the systematic reduction, still with the 
original semantics of the task domain, are then them- 
selves reduced by intentional instantiation: they are 
implemented exactly by other processes with different 
semantics but the same form. Thus a move-generation 
subprogram with game semantics is instantiated in a 
system of programs with list-manipulating semantics. 
This intentional instantiation typically plays a minor role 
in the overall explanation, if indeed it is regarded as a 
cognitively relevant part of the model at all. 

Thus cognitive explanations in the symbolic paradigm 
rely primarily on reductions involving no dimensional 
shift. This feature is not shared by the subsymbolic para- 
digm, where accurate explanations of intuitive behavior 
require descending to the subconceptual level. The ele- 
ments in this explanation, the units, do not have the 
semantics of the original behavior: that is the content of 
the subconzeptual unit hypothesis, (8b). In other words: 

(15) Unlike symbolic explanations, subsymbolic explana- 
tions rely crucially on a semantic (“dimensional”) shift 
that accompanies the shift from the conceptual to the 
subconceptual levels. 

The overall dispositions of cognitive systems are ex- 
plained in the subsymbolic paradigm as approximate 
higher-level regularities that emerge from quantitative 
laws operating at a more fundamental level with differ- 
ent semantics. This is the kind of reduction familiar in 
natural science, exemplified by the explanation of the 
laws of thermodynamics through a reduction to mechan- 
ics that involves shifting the dimension from thermal 
semantics to molecular semantics. (Section 9 discusses 
some explicit subsymbolic reductions of symbolic explan- 
atory constructs.) 

Indeed the subsymbolic paradigm repeals the other 
features that Haugeland identified as newly introduced 
into scientific explanation by the symbolic paradigm. 
The inputs and outputs of the system are not 
quasilinguistic representations but good old-fashioned 
numerical vectors. These inputs and outputs have se- 
mantic interpretations, but these are not constructed 
recursively from interpretations of embedded constitu- 
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ents. The fundamental laws are good old-fashioned nu- 
merical equations. 

Haugeland went to considerable effort to legitimize 
the form of explanation and reduction used in the sym- 
bolic paradigm. The explanations and reductions of the 
subsymbolic paradigm, by contrast, are of a type well- 
established in natural science. 

In summary, let me emphasize that in the subsym- 
bolic paradigm, the conceptual and subconceptual levels 
are not related as the levels of a von Neurmann computer 
(high-level-language program, compiled low-level pro- 
gram, etc.). The relationship between subsymbolic and 
symbolic models is more like that between quantum and 
classical mechanics. Subsymbolic models accurately de- 
scribe the microstructure of cognition, whereas symbolic 
models provide an approximate description of the mac- 
rostructure. An important job of subsymbolic theory is to 
delineate the situations and the respects in which the 
symbolic approximation is valid, and to explain why. 

6. Conscious rule appiication in the subsymbolic 
paradigm 

In the symbolic paradigm, both conscious rule applica- 
tion and intuition are described at the conceptual level; 
that is, conscious and unconscious rule interpretation, 
respectively. In the subsymbolic paradigm, conscious 
rule application can be formalized in the conceptual 
level but intuition must be formalized at the subconcep- 
tual level. This suggests that a subsymbolic model of a 
cognitive process that involves both intuition and con- 
scious rule interpretation would consist of two compo- 
nents using quite different formalisms. While this hybrid 
formalism might have considerable practical value, there 
are some theoretical problems with it. How would the 
two formalisms communicate? How would the hybrid 
system evolve with experience, reflecting the develop- 
ment of intuition and the subsequent remission of con- 
scious rule application? How would the hybrid system 
elucidate the fallibility of actual human rule application 
(e.g., logic)? How would the hybrid system get us closer 
to understanding how conscious rule application is 
achieved neurally? 

All these problems can be addressed by adopting a 
unified subconceptual-level analysis of both intuition 
and conscious rule interpretation. The virtual machine 
that is the conscious rule interpreter is to be imple- 
mented in a lower-level virtual machine: the same con- 
nectionist dynamical system that models the intuitive 
processor. How this can, in principle, be achieved is the 
subject of this section. The relative advantages and dis- 
advantages of implementing the rule interpreter in a 
connectionist dynamical system, rather than a von Neu- 
mann machine, will also be considered. 

Section 2.1 described the power of natural language 
for the propagation of cultural knowledge and the in- 
struction of novices. Someone who has mastered a natu- 
ral language has a powerful trick available for performing 
in domains where experience has been insufficient for 
the development of intuition: Verbally expressed rules, 
whether resident in memory or on paper, can be used to 
direct a step-by-step course to an answer. Once subsym- 
bolic models have achieved a sufficient subset of the 
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power to process natural language, they will be able to 
exploit the same trick. A subsymbolic system with natu- 
ral language competence will be able to encode linguistic 
expressions as patterns of activity; like all other patterns 
of activity, these can be stored in connectionist memo- 
ries using standard procedures. If the linguistic ex- 
pressions stored in memory happen to be rules, the sub- 
symbolic system can use them to solve problems 
sequentially in the following way. Suppose, for con- 
creteness, that the rules stored in memory are produc- 
tion rules of the form “if condition holds, then do ac- 
tion.” If the system finds itself in a particular situation 
where condition holds, then the stored production can 
be retrieved from the connectionist memory via the 
characteristic content-addressability of these memories: 
of the activity pattern representing the entire produc- 
tion, the subpart that pertains to condition is present, 
and this then leads to the reinstantiation in the memory 
of the entire pattern representing the production. The 
competence of the subsymbolic system to process natu- 
ral language must include the ability to take the portion 
of the reinstantiated pattern that encodes the verbal de- 
scription of action, and actually execute the action it 
describes; that is, the subsymbolic system must be able 
to interpret, in the computational sense of the term, the 
memorized description of action. The result is a subsym- 
bolic implementation of a production system, built pure- 
ly out of subsymbolic natural language processing mech- 
anisms. A connectionist account of natural language 
processes must eventually be developed as part of the 
subsymbolic paradigm, because natural language pro- 
cesses of fluent speakers are intuitive and thus, accord- 
ing to the subsymbolic hypothesis (8), must be modeled at 
the subconceptual level using subsymbolic computation. 

In summary: 

(16) The competence to represent and process linguistic 
structures in a native language is a competence of the 
human intuitive processor; the subsymbolic paradigm 
assumes that this competence can be modeled in a 
subconceptual connectionist dynamical system. By 
combining such linguistic competence with the mem- 
ory capabilities of connectionist systems, sequential 
rule interpretation can be implemented. 

Now note that our subsymbolic system can use its 
stored rules to perform the task. The standard learning 
procedures of connectionist models now turn this experi- 
ence of performing the task into a set of weights for going 
from inputs to outputs. Eventually, after enough experi- 
ence, the task can be performed directly by these 
weights. The input activity generates the output activity 
so quickly that before the relatively slow rule-interpreta- 
tion process has a chance to reinstantiate the first rule in 
memory and interpret it, the task is done. With inter- 
mediate amounts of experience, some of the weights are 
well enough in place to prevent some of the rules from 
having the chance to instantiate, while others are not, 
enabling other rules to be retrieved and interpreted. 

6.1. Rule interpretation, consciousness, and seriality. What 
about the conscious aspect of rule interpretation? Since 
consciousness seems to be a quite high-level description 
of mental activity, it is reasonable to suspect that it 



reflects the very coarse structure of the cognitive dynara- 
ical system. This suggests the following hypothesis: 

(17) The contents of consciousness reflect only the large- 
scale structure of activity patterns: subpatterns of ac- 
tivity that are extended over spatially large regions of 
the network and that are stable for relatively long 
periods of time. 

(See Rumelhart, Smolensky, McClelland & Hinton 1986. 
Note that (17) hypothesizes a necessary — not a sufficient 
— condition for an aspect of the subsymbolic state to be 
relevant to the conscious state.) The spatial aspect of this 
hypothesis has already played a major role in this article — 
it is in fact a restatement of the subconceptual unit 
hypothesis, (8b): Concepts that are consciously accessible 
correspond to patterns over large numbers of units. It is 
the temporal aspect of hypothesis (17) that is reievant 
here. The rule interpretation process requires that the 
retrieved linguistically coded rule be maintained in mem- 
ory while it is being interpreted. Thus the pattern of 
activity representing the rule must be stable for a rela- 
tively long time. In contrast, after connections have been 
developed to perform the task directly, there is no corre- 
spondingly stable pattern formed during the performance 
of the task. Thus the loss of conscious phenomenology 
with expertise can be understood naturally. 

On this account, the sequentiality of the rule in- 
terpretation process is not built into the architecture; 
rather, it is linked to our ability to follow only one verbal 
instruction at a time. Connectionist memories have the 
ability to retrieve a single stored item, and here this 
ability is called upon so that the linguistic interpreter is 
not required to interpret multiple instructions simultane- 
ously. 

It is interesting to note that the preceding analysis also 
applies to nonlinguistic rules: Any notational system that 
can be appropriately interpreted will do. For example, 
another type of rule might be a short series of musical 
pitches; a memorized collection of such rules would allow 
a musician to play a tune by conscious rule interpretation. 
With practice, the need for conscious control goes away. 
Since pianists learn to interpret several notes simul- 
taneously, the present account suggests that a pianist 
might be able to apply more than one musical rule at a 
time; if the pianist’s memory for these rules can simul- 
taneously recall more than one, it would be possible to 
generate multiple musical lines simultaneously using 
conscious rule interpretation. A symbolic account of such 
a process would involve something like a production 
system capable of firing multiple productions simultane- 
ously. 

Finally, it should be noted that even if the memorized 
rules are assumed to be linguistically coded, the preced- 
ing analysis is uncommitted about the form the encoded 
rules take in memory: phonological, orthographic, se- 
mantic, or whatever. 

6.2. Symbolic versus subsymbolic implementation of rule 
interpretation. The (approximate) implementation of the 
conscious rule interpreter in a subsymbolic system has 
both advantages and disadvantages relative to an (exact) 
implementation in a von Neumann machine. 

The main disadvantage is that subconceptual represen- 
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tation and interpretation of linguistic instructions is very 
difficult and we are not actually able to do it now. Most 
existing subsymbolic systems simply don’t use rule in- 
terpretation.* Thus they miss out on all the advantages 
listed in (2). They can’t take advantage of rules to check 
the results produced by the intuitive processor. They 
can’t bootstrap their way into a new domain using rules to 
generate their own experience: they must have a teacher 
generate it for them.® 

There are several advantages of a subconceptually 
implemented rule interpreter. The intuitive processor 
and rule interpreter are highly integrated, with broad- 
band communication between them. Understanding how 
this communication works should allow the design of 
efficient hybrid symbolic/subsymbolic systems with ef- 
fective communication between the processors. A prin- 
cipled basis is provided for studying how rule-based 
knowledge leads to intuitive knowledge. Perhaps most 
interesting, in a subsymbolic rule interpreter, the pro- 
cess of rule selection is intuitive! Which rule is reinstanti- 
ated in memory at a given time is the result of the 
associative retrieval process, which has many nice prop- 
erties. The best match to the productions’ conditions is 
quickly computed, and even if no match is very good, a 
rule can be retrieved. The selection process can be quite 
context-sensitive. 

An integrated subsymbolic rule interpreter/intuitive 
processor in principle offers the advantages of both kinds 
of processing. Imagine such a system creating a mathe- 
matical proof. The intuitive processor would generate 
goals and steps, and the rule interpreter would verify 
their validity. The serial search through the space of 
possible steps, which is necessary in a purely symbolic 
approach, is replaced by the intuitive generation of pos- 
sibilities. Yet the precise adherence to strict inference 
rules that is demanded by the task can be enforced by the 
rule interpreter; the creativity of intuition can be ex- 
ploited while its unreliability can be controlled. 

6.3. Two kinds of knowledge — one knowledge medium. 
Most existing subsymbolic systems perform tasks without 
serial rule interpretation: Patterns of activity represent- 
ing inputs are directly transformed (possibly through 
multiple layers of units) into patterns of activity repre- 
senting outputs. The connections that mediate this trans- 
formation represent a form of task knowledge that can be 
applied with massive parallelism: I will call it P-knowl- 
edge. For example, the P-knowledge in a native speaker 
presumably encodes lexical, morphological, syntactic, 
semantic, and pragmatic constraints in such a form that all 
these constraints can be satisfied in parallel during com- 
prehension and generation. 

The connectionist implementation of sequential rule 
interpretation described above displays a second form 
that knowledge can take in a subsymbolic system. The 
stored activity patterns that represent rules also con- 
stitute task knowledge: Call it S-knowledge. Like P- 
knowledge, S-knowledge is embedded in connections: 
the connections that enable part of a rule to reinstantiate 
the entire rule. Unlike P-knowledge, S-knowledge can- 
not be used with massive parallelism. For example, a 
novice speaker of some language cannot satisfy the con- 
straints contained in two memorized rules simultane- 
ously; they must be serially reinstantiated as patterns of 
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activity and separately interpreted. Of course, the con- 
nections responsible for reinstantiating these memories 
operate in parallel, and indeed these connections contain 
within them the potential to reinstantiate either of the 
two memorized rules. But these connections are so ar- 
ranged that only one rule at a time can be reinstantiated. 
The retrieval of each rule is a parallel process, but the 
satisfaction of the constraints contained within the two 
rules is a serial process. After considerable experience, P- 
knowledge is created: connections that can simul- 
taneously satisfy the constraints represented by the two 
rules. 

P-knowledge is considerably more difficult to create 
than S-knowledge. To encode a constraint in connections 
so that it can be satisfied in parallel with thousands of 
others is not an easy task. Such an encoding can only be 
learned through considerable experience in which that 
constraint has appeared in many different contexts, so 
that the connections enforcing the constraint can be 
tuned to operate in parallel with those enforcing a wide 
variety of other constraints. S-knowledge can be acquired 
(once the linguistic skills on which it depends have been 
encoded into P-knowledge, of course) much more 
rapidly. For example, simply reciting a verbal rule over 
and over will usually suffice to store it in memory, at least 
temporarily. 

That P-knowledge is so highly context-dependent 
while the rules of S-knowledge are essentially context- 
independent is an important computational fact underly- 
ing many of the psychological explanations offered by 
subsymbolic models. Consider, for example, Rumelhart 
and McClelland’s (1986) model of the U-shaped curve for 
past-tense production in children. The phenomenon is 
striking: A child is observed using goed and wented when 
at a much younger age went was reliably used. This is 
surprising because we are prone to think that such lin- 
guistic abilities rest on knowledge that is encoded in some 
context-independent form such as “the past tense of go is 
went.” Why should a child lose such a rule once acquired? 
A traditional answer invokes the acquisition of a different 
context-independent rule, such as “the past tense of x is x 
+ ed” which, for one reason or another, takes prece- 
dence. The point here, however, is that there is nothing 
at all surprising about the phenomenon when the under- 
lying knowledge is assumed to be context-dependent and 
not context-independent. The young child has a small 
vocabulary of largely irregular verbs. The connections 
that implement this P-knowledge are reliable in produc- 
ing the large pattern of activity representing went, as well 
as those representing a small number of other past-tense 
forms. Informally we can say that the connections produc- 
ing went do so in the context of the other vocabulary items 
that are also stored in the same connections. There is no 
guarantee that these connections will produce went in the 
context of a different vocabulary. As the child acquires 
additional vocabulary items, most of which are regular, 
the context radically changes. Connections that were, so 
to speak, perfectly adequate for creating went in the old 
context now have to work in a context where very strong 
connections are trying to create forms ending in -ed; the 
old connections are not up to the new task. Only through 
extensive experience trying to produce went in the new 
context of many regular verbs can the old connections be 
modified to work in the new context. In particular, strong 
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new connections must be added that, when the input 
pattern encodes go, cancel the -ed in the output; these 
were not needed before. 

These observations about context-dependence can also 
be framed in terms of inference. If we choose to regard 
the child as using knowledge to infer the correct answer 
went, then we can say that after the child has added more 
knowledge (about new verbs), the ability to make the 
(correct) inference is lost. In this sense the child’s in- 
ference process is nonmonotonic — perhaps this is why we 
find the phenomenon surprising. As will be discussed in 
Section 8, nonmonotonicity is a fundamental property of 
subsymbolic inference. 

To summarize: 

(18) a. Knowledge in subsymbolic systems can take two 
forms, both resident in the connections. 

b. The knowledge used by the conscious rule interpreter 
lies in connections that reinstantiate patterns encoding 
rules; task constraints are coded in context-indepen- 

dent rules and satisfied serially. 
c. The knowledge used in intuitive processing lies in 

connections that constitute highly context-dependent 
encodings of task constraints that can be satisfied with 

massive parallelism. 
d. Learning such encodings requires much experience. 

7. Subsymbolic definition of cognitive systems 
and some foundational issues 

In order for the subconceptual level to be rightly viewed 
as a level for practicing cognitive science, it is necessary 
that the principles formulated at this level truly be princi- 
ples of cognition. Since subsymbolic principles are nei- 
ther conceptual-level nor neural-level principles, it is not 
immediately apparent what kind of cognitive principles 
they might be. The structure of subsymbolic models is 
that of a dynamical system; in what sense do these models 
embody principles of cognition rather than principles of 
physics? 

What distinguishes those dynamical systems that are 
cognitive from those that are not? At this point the types 
of dynamical systems being studied in connectionist cog- 
nitive science lack anything that could justly be called an 
intentional psychology. In this section I wish to show that 
it is nonetheless possible to distinguish the sort of dynam- 
ical systems that have so far been the object of study in 
connectionist cognitive science from the dynamical sys- 
tems that have traditionally been the subject matter of 
physics, and that the questions being studied are indeed 
questions of cognition. 

A crucial property of cognitive systems broadly con- 
strued is that over a wide variety of environments they 
can maintain, at an adequately constant level, the degree 
to which a significant number of goal conditions are met. 
Here I intend the teleological, rather than the inten- 
tional, sense of “goal.” A river, for example, is a complex 
dynamical system that responds sensitively to its environ- 
ment — but about the only condition that it can satisfy over 
a large range of environments is going downhill. A cock- 
roach manages, over an annoyingly extensive range of 
environments, to maintain its nutritive intake, its re- 
productive demands, its oxygen intake, even its proba- 
bility of getting smashed, all within a relatively narrow 



band. The repertoire of conditions that people can keep 
satisfied, and the range of environments under which this 
relative constancy can be maintained, provides a measure 
worthy of the human cognitive capacity. 

(19) Cognitive system: 
A necessary condition for a dynamical system to be 
cognitive is that, under a wide variety of environmen- 
tal conditions, it maintains a large number of goal 

conditions. The greater the repertoire of goals and 
variety of tolerable environmental conditions, the 

greater the cognitive capacity of the system. 

The issue of complexity is crucial here. A river (or a 
thermostat) only fails to be a cognitive dynamical system 
because it cannot satisfy a large range of goals under a 
wide range of conditions.!° Complexity is largely what 
distinguishes the dynamical systems studied in the sub- 
symbolic paradigm from those traditionally studied in 
physics. Connectionist dynamical systems have great 
complexity: The information content in their weights is 
very high. Studying the extent to which a connectionist 
dynamical system can achieve complex goals in complex 
environments requires grappling with complexity in dy- 
namical systems in a way that is traditionally avoided in 
physics. In cognitive modeling, many of the basic ques- 
tions concern the detailed dynamics of a distinct pattern 
of activation in a system with a particular initial state and a 
particular set of interaction strengths that are highly 
nonhomogeneous. This is like asking a physicist: “Sup- 
pose we have a gas with 10,000 particles with the follow- 
ing 10,000 different masses and the following 500,000 
different forces between them. Suppose we start them at 
rest in the following 10,000 positions. What are the 
trajectories of the following 20 particles?” This is indeed a 
question about a dynamical system, and is, in a sense, a 
question of physics. It is this kind of question, however, 
that is avoided at all costs in physics. The physicist we 
consulted is likely to compute the mean collision times for 
the particles assuming equal masses, random starting 
positions, and uniformly random interactions, and say “if 
that isn’t good enough, then take your question to a 
computer. ”!! 

Nonetheless, physics has valuable concepts and tech- 
niques to contribute to the study of connectionist dynam- 
ical systems. Insights from physics have already proved 
important in various ways in the subsymbolic paradigm 
(Hinton & Sejnowski 1983a; Sejnowski 1976; Smolensky 
1983). 

Various subsymbolic models have addressed various 
goals and environments. A very general goal that is of 
particular importance is: 

(20) The prediction goal: Given some partial information 
about the environmental state, correctly infer missing 

information. 

What is maintained here is the degree of match between 
predicted values and the actual values for the unknowns. 
Maintenance of this match over the wide range of condi- 
tions found in a complex environment is a difficult task. 
Special cases of this task include predicting the depth of 
an object from retinal images, the future location of a 
moving object, the change in certain aspects of an electric 
circuit given the changes in other aspects, or the proposi- 
tions implied by a text. The prediction goal is obviously an 
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important one, because it can serve so many other goals: 
Accurate prediction of the effects of actions allows the 
selection of those leading to desired effects. 
A closely related goal is: 

(21) The prediction-from-examples goal: Given more and 
more examples of states from an environment, achieve 
the prediction goal with increasing accuracy in that 
environment. 

For the prediction goal we ask: What inference pro- 
cedures and knowledge about an environment must a 
dynamical system pcssess to be able to predict that 
environment? For the prediction-from-examples goal we 
go further and ask: What learning procedures must a 
dynamical system possess to be able to acquire the neces- 
sary knowledge about an environment from examples? 

The goals of prediction and prediction-from-examples 
are the subject of many principles of the subsymbolic 
paradigm. These are indeed cognitive principles. They 
will be taken up in the next section; first, however, I 
would like to consider some implications of this charac- 
terization of a cognitive system for certain foundational 
issues: semantics, rationality, and the constituent struc- 
ture of mental states. It-would be absurd to suggest that 
the following few paragraphs constitute definitive treat- 
ments of these issues; the intent is rather to indicate 
specific points where subsymbolic research touches on 
these issues and to sow seeds for further analysis. 

7.1. Semantics and rationality in the subsymbolic paradigm. 

The subsymbolic characterization of a cognitive system 
(19) intrinsically binds cognitive systems both to states of 
the environment and to goal conditions. It therefore has 
implications for the question: How do states of a subsym- 
bolic system get their meanings and truth conditions? A 
starting point for an answer is suggested in the following 
hypothesis: 

(22) Subsymbolic semantics: 
A cognitive system adopts various internal states in 
various environmental conditions. To the extent that 
the cognitie system meets its goal conditions in vari- 
ous environmental conditions, its internal states are 
veridical representations of the corresponding en- 
vironmental states, with respect to the given goal 
conditions. 

For the prediction goal, for example, a state of the 
subsymbolic system is a veridical representation of the 
current environmental state to the extent that it leads to 
correct predictions. 

According to hypothesis (22), it is not possible to 
localize a failure of veridical representation. Any particu- 
lar state is part of a large causal system of states, and 
failures of the system to meet goal conditions cannot in 
general be localized to any particular state or state compo- 
nent. !2 In subsymbolic systems, this assignment of blame 
problem (Minsky 1963) is a difficult one, and it makes 
programming subsymbolic models by hand very tricky. 
Solving the assignment of blame problem is one of the 
central accomplishments of the automatic network pro- 
gramming procedures: the learning procedures of the 
subsymbolic paradigm. 

The characterization (19) of cognitive systems relates to 
rationality as well. How can one build a rational machine? 
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How can internal processes (e.g., inference) be guaran- 
teed to preserve veridical semantic relationships (e.g. , be 
truth preserving)? These questions now become: How 
can the connection strengths be set so that the subsym- 
bolic system will meet its goal conditions? Again, this is a 
question answered by the scientific discoveries of the 
subsymbolic paradigm: particular procedures for pro- 
gramming machines to meet certain goals — especially 
learning procedures to meet adaptation goals such as 
prediction-from-examples. 

Let me compare this subsymbolic approach to ver- 
idicality with a symbolic approach to truth preservation 
offered by Fodor (1975; 1987). In the context of model- 
theoretic semantics for a set of symbolic formulae, proof 
theory provides a set of symbol manipulations (rules of 
inference) guaranteed to preserve truth conditions. Thus 
if an agent possesses knowledge in the symbolic form p—> 
q and additional knowledge p, then by syntactic opera- 
tions the agent can produce q; proof theory guarantees 
that the truth conditions of the agent’s knowledge (or 
beliefs) has not changed. 

There are fairly direct subsymbolic counterparts to this 
proof theoretic account. The role of logical inference is 
played by statistical inference. By explicitly formalizing 
tasks like prediction as statistical inference tasks, it is 
possible to prove for appropriate systems that subsym- 
bolic computation is valid in a sense directly comparable 
to symbolic proof. Further discussion of this point, which 
will appear in Section 9.1, must await further examination 
of the computational framework of the subsymbolic para- 
digm, which is the subject of Section 8. 

Note that the proof theoretic account explains the 
tautological inference of q from p and p— q, but it leaves 
to an independent module an account of how the agent 
acquired the knowledge p— gq that licenses the inference 
from p to q. In the subsymbolic account, the veridicality 
problem is tied inextricably to the environment in which 
the agent is trying to satisfy the goal conditions — subsym- 
bolic semantics is intrinsically situated. The subsymbolic 
analysis of veridicality involves the following basic ques- 
tions: How can a cognitive system be put in a novel 
environment and learn to create veridical internal repre- 
sentations that allow valid inferences about that environ- 
ment so that goal conditions can be satisfied? How can it 
pick up information from its environment? These are 
exactly the questions addressed by subsymbolic learning 
procedures. 

Note that in the subsymbolic case, the internal process- 
ing mechanisms (which can appropriately be called in- 
ference procedures) do not, of course, directly depend 
causally on the environmental state that may be internally 
represented or on the veridicality of that representation. 
In that sense, they are just as formal as syntactic symbol 
manipulations. The fact that a subsymbolic system can 
generate veridical representations of the environment 
(e.g., make valid predictions) is a result of extracting 
information from the environment and internally coding 
it in its weights through a learning procedure. 

7.2. Constituent structure of mental states. Fodor and 
Pylyshyn have argued (e.g., Fodor 1975; Pylyshyn 1984) 
that mental states must have constituent structure, and 
they have used this. argument against the connectionist 
approach (Fodor & Pylyshyn 1988). Their argument ap- 
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plies, however, only to ultra-local connectionist models 
(Ballard & Hayes 1984); it is quite inapplicable to the 
distributed connectionist systems considered here. A 
mental state in a subsymbolic system is a pattern of 
activity with a constituent structure that can be analyzed 
at both the conceptual and the subconceptual levels. In 
this section I offer a few general observations on this 
issue; the connectionist representation of complex struc- 
tures is an active area of research (Smolensky 1987; 
Touretzky 1986), and many difficult problems remain to 
be solved (for futher discussion see Smolensky 1988). 

At the conceptual level, a connectionist mental state 
contains constituent subpatterns that have conceptual 
interpretations. Pylyshyn, in a debate over the connec- 
tionist approach at the 1984 meeting of the Cognitive 
Science Society, suggested how to extract these concep- 
tual constituents with the following example: The connec- 
tionist representation of coffee is the representation of 
cup with coffee minus the representation of cup without 
coffee. To carry out this suggestion, imagine a crude but 
adequate kind of distributed semantic representation, in 
which the interpretation of cup with coffee involves the 
activity of network units representing features like brown 
liquid with flat top surface, brown liquid with curved 
sides and bottom surface, brown liquid contacting por- 
celain, hot liquid, upright container with a handle, burnt 
odor, and so forth. We should really use subconceptual 
features, but even these features are sufficiently low-level 
to make the point. Following Pylyshyn, we take this 
representation of the interpretation of cup with coffee and 
subtract from it the representation of the interpretation of 
cup without coffee, leaving the representation of coffee. 
What remains, in fact, is a pattern of activity with active 
features such as brown liquid with flat top surface, brown 
liquid with curved sides and bottom surface, brown liquid 
contacting porcelain, hot liquid, and burnt odor. This 
represents coffee, in some sense — but coffee in the 
context of cup. 

In using Pylyshyn’s procedure for determining the 
connectionist representation of coffee, there is nothing 
sacred about starting with cup with coffee: why not start 
with can with coffee, tree with coffee, or man with coffee, 
and subtract the corresponding representation of X with- 
out coffee? Thinking back to the distributed featural 
representation, it is clear that each of these procedures 
produces quite a different result for “the” connectionist 
representation of coffee. The pattern representing coffee 
in the context of cup is quite different from the pattern 
representing coffee in the context of can, tree, or man. 

The pattern representing cup with coffee can be de- 
composed into conceptual-level constituents, one for 
coffee and another for cup. This decomposition differs in 
two significant ways from the decomposition of the sym- 
bolic expression cup with coffee, into the three constitu- 
ents, coffee, cup, and with. First, the decomposition is 
quite approximate. The pattern of features representing 
cup with coffee may well, as in the imagined case above, 
possess a subpattern that can be identified with coffee, as 
well as a subpattern that can be identified with cup; but 
these subpatterns will in general not be defined precisely 
and there will typically remain features that can be 
identified only with the interaction of the two (as in brown 
liquid contacting porcelain). Second, whatever the sub- 
pattern identified with coffee, unlike the symbol coffee, it 



is a context-dependent constituent, one whose internal 
structure is heavily influenced by the structure of which it 
is a part. 

These constituent subpatterns representing coffee in 
varying contexts are activity vectors that are not identical, 
but possess a rich structure of commonalities and dif- 
ferences (a family resemblance, one might say). The 
commonalities are directly responsible for the common 
processing implications of the interpretations of these 
various phrases, so the approximate equivalence of the 
coffee vectors across contexts plays a functional role in 
subsymbolic processing that is quite close to the role 
played by the exact equivalence of the coffee tokens 
across different contexts in a symbolic processing system. 

The conceptual-level constituents of mental states are 
activity vectors, which themselves have constituent 
structure at the subconceptual level: the individual units’ 
activities. To summarize the relationship between these 
notions of constituent structure in the symbolic and 
subsymbolic paradigms, let’s call each coffee vector the 
(connectionist) symbol for coffee in the given context. 
Then we can say that the context alters the internal 
structure of the symbol; the activities of the subconcep- 
tual units that comprise the symbol — its subsymbols — 
change across contexts. In the symbolic paradigm, a 
symbol is effectively contextualized by surrounding it 
with other symbols in some larger structure. In other 
words: 

(23) Symbols and context dependence: 
In the symbolic paradigm, the context of a symbol is 
manifest around it and consists of other symbols; in the 
subsymbolic paradigm, the context of a symbol is 
manifest inside it and consists of subsymbols. 

(Compare Hofstadter 1979; 1985.) 

8. Computation at the subconceptual level 

Hypothesis (8a) offers a brief characterization of the 
connectionist architecture assumed at the subconceptual 
level by the subsymbolic paradigm. It is time to bring out 
the computational principles implicit in that hypothesis. 

8.1. Continuity. According to (8a), a connectionist dynam- 
ical system has a continuous space of states and changes 
state continuously in time. I take time in this section to 
motivate at some length this assumption of continuity, 
because it plays a central role in the characterization of 
subsymbolic computation and because readers familiar 
with the literature on connectionist models will no doubt 
require that I reconcile the continuity assumption with 
some salient candidate counterexamples. 

Within the symbolic paradigm, the simplest, most 
straightforward formalizations of a number of cognitive 
processes have quite discrete characters: 

(24) a. Discrete memory locations, in which items are stored 

without mutual interaction. 
b. Discrete memory storage and retrieval operations, in 

which an entire item is stored or retrieved in a single, 

atomic (primitive) operation. 
. Discrete learning operations, in which new rules be- 
come available for use in an all-or-none fashion. 

. Discrete inference operations, in which conclusions 

become available for use in an all-or-none fashion. 
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. Discrete categories, to which items either belong or do 
not belong. 

. Discrete production rules, with conditions that are 
either satisfied or not satisfied, and actions that either 
execute or do not execute. 

These discrete features come “for free” in the symbolic 
paradigm: Of course, any one of them can be softened but 
only by explicitly building in machinery to do so. 

Obviously (24) is a pretty crude characterization of 
cognitive behavior. Cognition seems to be a richly inter- 
woven fabric of graded, continuous processes and dis- 
crete, all-or-none processes. One way to model this 
interplay is to posit separate discrete and continuous 
processors in interaction. Some theoretical problems 
with this move were mentioned in Section 6, where a 
unified formalism was advocated. It is difficult to intro- 
duce a hard separation between the soft and the hard 
components of processing. An alternative is to adopt a 
fundamentally symbolic approach, but to soften various 
forms of discreteness by hand. For example, the degree of 
match to conditions of production rules can be given 
numerical values, productions can be given strengths, 
interactions between separately stored memory items 
can be put in by hand, and so on (Anderson 1983). 

The subsymbolic paradigm offers another alternative. 
All the discrete features of (24) are neatly swept aside in 
one stroke by adopting a continuous framework that 
applies at the subconceptual level. Then, when the con- 
tinuous system is analyzed at the higher, conceptual 
level, various aspects of discreteness emerge naturally 
and inevitably, without explicit machinery having been 
devised to create this discreteness. These aspects of 
“hardness” are intrinsically embedded in a fundamen- 
tally “soft” system. The dilemma of accounting for both 
the hard and soft aspects of cognition is solved by using 
the passage from a lower level of analysis to a higher level 
to introduce natural changes in the character of the 
system: The emergent properties can have a different 
nature from the fundamental properties. This is the story 
to be fleshed out in the remainder of the paper. It rests on 
the fundamental continuity of subsymbolic computation, 
which is further motivated in the remainder of this 
section (for further discussion see Smolensky 1988). 

It may appear that the continuous nature of subsym- 
bolic systems is contradicted by the fact that it is easy to 
find in the connectionist literature models that are quite 
within the spirit of the subsymbolic paradigm, but which 
have neither continuous state spaces nor continuous 
dynamics. For example, models having units with binary 
values that jump discretely on the ticks of a discrete clock 
(the Boltzmann machine, Ackley et al. 1985; Hinton & 
Sejnowski 1983a; harmony theory, Smolensky 1983; 
1986a). I will now argue that these models should be 
viewed as discrete simulations of an underlying continu- 
ous model, considering first discretization of time and 

then discretization of the units’ values. 
Dynamical systems evolving in continuous time are 

almost always simulated on digital computers by dis- 
cretizing time. Since subsymbolic models have almost 
always been simulated on digital computers, it is no 
surprise that they too have been simulated by discretizing 
time. The equations defining the dynamics of the models 
can be understood more easily by most cognitive scien- 
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tists if the differential equations of the underlying contin- 
uous dynamical system are avoided in favor of the dis- 
crete-time approximations that actually get simulated. 
When subsymbolic models use binary-valued units, 

these values are best viewed not as symbols like T and 
NIL that are used for conditional branching tests, but as 
numbers (not numerals!) like 1 and 0 that are used for 
numerical operations (e.g., multiplication by weights, 
summation, exponentiation). These models are formu- 
lated in such a way that they are perfectly well-defined for 
continuous values of the units. Discrete numerical unit 
values are no more than a simplification that is sometimes 
convenient. !* 

As historical evidence that underlying subsymbolic 
models are continuous systems, it is interesting to note 
that when the theoretical conditions that license the 
discrete approximation have changed, the models have 
reverted to continuous values. In the harmony/energy 
optima model, when the jumpy stochastic search was 
replaced by a smooth deterministic one (Rumelhart, 
Smolensky, McClelland & Hinton 1986), the units were 
changed to continuous ones. !4 

A second, quite dramatic, piece of historical evidence 
is a case where switching from discrete to continuous 
units made possible a revolution in subsymbolic learning 
theory. In their classic book, Perceptrons, Minsky and 
Papert (1969) exploited primarily discrete mathematical 
methods that were compatible with the choice of binary 
units. They were incapable of analyzing any but the 
simplest learning networks. By changing the discrete 
threshold function of perceptrons to a smooth, differ- 
entiable curve, and thereby defining continuous-valued 
units, Rumelhart, Hinton, and Williams (1986) were able 
to apply continuous analytic methods to more complex 
learning networks. The result was a major advance in the 
power of subsymbolic learning. 

A third historical example of the power of a continuous 
conception of subsymbolic computation relates to the 
connectionist generation of sequences. Traditionally this 
task has been viewed as making a connectionist system 
jump discretely between states to generate an arbitrary 
discrete sequence of actions A,,A 9,°**. This view of the 
task reduces the connectionist system to a finite state 
machine that can offer little new to the analysis of sequen- 
tial behavior. Recently Jordan (1986) has shown how a 
subsymbolic approach can give “for free” co-articulation 
effects where the manner in which actions are executed is 
influenced by future actions. Such effects are just what 
should come automatically from implementing serial be- 
havior in a fundamentally parallel machine. Jordan’s trick 
is to view the connectionist system as evolving continu- 
ously in time, with the task being the generation of a 
continuous trajectory through state space, a trajectory 
that meets as boundary conditions certain constraints, for 
example, that the discrete times 1, 2, --- the system state 
must be in regions corresponding to the actions A, Ag, 

The final point is a foundational one. The theory of 
discrete computation is quite well understood. If there is 
any new theory of computation implicit in the subsym- 
bolic approach, it is likely to be a result of a fundamentally 
different, continuous formulation of computation. It 
therefore seems fruitful, in order to maximize the oppor- 
tunity for the subsymbolic paradigm to contribute new 
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computational insights, to hypothesize that subsymbolic 
computation is fundamentally continuous. 

It must be emphasized that the discrete/continuous 
distinction cannot be understood completely by looking 
at simulations. Discrete and continuous machines can of 
course simulate each other. The claim here is that the 
most analytically powerful descriptions of subsymbolic 
models are continuous ones, whereas those of symbolic 
models are not continuous. 

This has profound significance because it means that 
many of the concepts used to understand cognition in the 
subsymbolic paradigm come from the category of contin- 
uous mathematics, while those used in the symbolic 
paradigm come nearly exclusively from discrete mathe- 
matics. Concepts from physics, from the theory of dy- 
namical systems, are at least as likely to be important as 
concepts from the theory of digital computation. And 
analog computers, both electronic and optical, provide 
natural implementation media for subsymbolic systems 
(Anderson 1986; Cohen 1986). 

8.2. Subsymbolic computation. An important illustration of 
the continuous/discrete mathematics contrast that dis- 
tinguishes subsymbolic from symbolic computation is 
found in inference. A natural way to look at the knowl- 
edge stored in connections is to view each connection as a 
soft constraint. A positive (excitatory) connection from 
unit a to unit b represents a soft constraint to the effect 
that if a is active, then b should be too. A negative 
(inhibitory) connection represents the opposite con- 
straint. The numerical magnitude of a connection repre- 
sents the strength of the constraint. 

Formalizing knowledge in soft constraints rather than 
hard rules has important consequences. Hard constraints 
have consequences singly; they are rules that can be 
applied separately and sequentially — the operation of 
each proceeding independently of whatever other rules 
may exist. But soft constraints have no implications sin- 
gly; any one can be overridden by the others. It is only the 
entire set of soft constraints that has any implications. 
Inference must be a cooperative process, like the parallel 
relaxation processes typically found in subsymbolic sys- 
tems. Furthermore, adding additional soft constraints 
can repeal conclusions that were formerly valid: Subsym- 
bolic inference is fundamentally nonmonotonic. 

One way of formalizing soft constraint satisfaction is in 
terms of statistical inference. In certain subsymbolic 
systems, the soft constraints can be identified as statistical 
parameters, and the activation passing procedures can be 
identified as statistical inference procedures (Geman & 
Geman 1984; Hinton & Sejnowski 1983b; Pearl 1985; 
Shastri 1985; Smolensky 1986a). This identification is 
usually rather complex and subtle: Unlike in classical 
“spreading activation” models and in many local connec- 
tionist models, the strength of the connection between 
two units is not determined solely by the correlation 
between their activity (or their “degree of association’). 
To implement subsymbolic statistical inference, the cor- 
rect connection strength between two units will typically 
depend on all the other connection strengths. The sub- 
symbolic learning procedures that sort out this interde- 
pendence through simple, strictly local, computations 
and ultimately assign the correct strength to each connec- 
tion are performing no trivial task. 



To sum up: 

(25) a. Knowledge in subsymbolic computation is formalized 
as a large set of soft constraints. 

b. Inference with soft constraints is fundamentally a par- 
allel process. 

c. Inference with soft constraints is fundamentally 
nonmonotonic. 

d. Certain subsymbolic systems can be identified as using 
statistical inference. 

9. Conceptual-level descriptions of intuition 

The previous section concerned computation in subsym- 
bolic systems analyzed at the subconceptual-level, the 
level of units and connections. In this final section I 
consider analyses of subsymbolic computation at the 
higher, conceptual level. Section 6 discussed subsym- 
bolic modeling of conscious rule interpretation; here I 
consider subsymbolic models of intuitive processes. I will 
elaborate the point foreshadowed in Section 5: Concep- 
tual-level descriptions of aspects of subsymbolic models 
of intuitive processing roughly approximate symbolic 
accounts. The picture that emerges is of a symbiosis 
between the symbolic and subsymbolic paradigms: The 
symbolic paradigm offers concepts for better understand- 
ing subsymbolic models, and those concepts are in turn 
illuminated with a fresh light by the subsymbolic para- 
digm. 

9.1. The Best Fit Principle. The notion that each connection 
represents a soft constraint can be formulated at a higher 
level: 

(26) The Best Fit Principle: 
Given an input, a subsymbolic system outputs a set of 
inferences that, as a whole, gives a best fit to the input, 

in a statistical sense defined by the statistical knowl- 
edge stored in the system’s connections. 

In this vague form, this principle can be regarded as a 
desideratum of subsymbolic systems. Giving the princi- 
ple, formal embodiment in a class of connectionist dy- 
namical systems was the goal of harmony theory (Riley & 
Smolensky 1984; Smolensky 1983; 1984a; 1984b; 1986a; 
1986c). 
To render the Best Fit Principle precise, it is necessary 

to provide precise definitions of “inferences,” “best fit,” 
and “statistical knowledge stored in the system’s connec- 
tions.” This is done in harmony theory, where the central 
object is the harmony function H which measures, for any 
possible set of inferences, the goodness of fit to the input 
with respect to the soft constraints stored in the connec- 
tion strengths. The set of inferences with the largest value 
of H, that is, highest harmony, is the best set of in- 
ferences, with respect to a well-defined statistical 
problem. 
Harmony theory offers three things. It gives a mathe- 

matically precise characterization of the prediction-from- 
examples goal as a statistical inference problem. It tells 
how the prediction goal can be achieved using a network 
with a certain set of connections. Moreover, it gives a 
procedure by which the network can learn the correct 
connections with experience, thereby satisfying the pre- 
diction-from-examples goal. 
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The units in harmony networks are stochastic: The 
differential equations defining the system are stochastic. 
There is a system parameter called the computational 
temperature that governs the degree of randomness in 
the units’ behavior, it goes to zero as the computation 
proceeds. (The process is simulated annealing, like in the 
Boltzmann machine: Ackley, et al. 1985; Hinton & Sej- 
nowski 1983a, 1983b, 1986. See Rumelhart, McClelland 
& the PDP Research Group, 1986, p. 148, and Smol- 
ensky, 1986a, for the relations between harmony theory 
and the Boltzmann machine.) 

9.2. Productions, sequential processing, and logical in- 
ference. A simple harmony model of expert intuition in 
qualitative physics was described by Riley and Smolensky 
(1984) and Smolensky (1986a, 1986c). The model answers 
questions such as, “What happens to the voltages in this 
circuit if] increase this resistor?” (The questions refer toa 
particular simple circuit; the model's expertise is built in 
and not the result of learning.) This connectionist prob- 
lem-solving system illustrates several points about the 
relations between subconceptual- and conceptual-level 
descriptions of subsymbolic computation. 

Very briefly, the model looks like this. The state of the 
circuit is represented as a vector of activity over a set of 
network units we can call circuit state feature units — 
“feature units” for short. A subpart of this activity pattern 
represents whether the circuit's current has gone up, 
down, or stayed the same; other subparts indicate what 
has happened to the voltage drops, and so on. Some of 
these subpatterns are fixed by the givens in the problem, 
and the remainder comprise the answer to be computed 
by the network. There is a second set of network units, 
called knowledge atoms, each of which corresponds to a 
subpattern of activity over feature units. The subpatterns 
of features encoded by knowledge atoms are those that 
can appear in representations of possible states of the 
circuit: They are subpatterns that are allowed by the laws 
of circuit physics. The system's knowledge of Ohm’s Law, 
for example, is distributed over the many knowledge 
atoms whose subpatterns encode the legal feature com- 
binations for current, voltage, and resistance. The con- 
nections in the network determine which feature subpat- 
tern corresponds to a given knowledge atom. The 
subpattern corresponding to knowledge atom a includes 
a positive (negative) value for a particular feature f if there 
is a positive (negative) connection between unit a and 
unit f; the subpattern for a does not include f at all if there 
is no connection between a and f. All connections are 
two-way: Activity can propagate from feature units to 
knowledge atoms and vice versa. The soft constraints 
encoded by these connections, then, say that “if subpat- 
tern a is present, then feature f should be positive 
(negative), and vice versa.” 

In the course of computing an answer to a question, the 
units in the network change their values hundreds of 
times. Each time a unit recomputes its value, we have a 
microdecision. As the network converges to a solution, it 
is possible to identify macrodecisions, each of which 
amounts to a commitment of part of the network to a 
portion of the solution. Each macrodecision is the result 
of many individual microdecisions. These macrodecisions 
are approximately like the firing of production rules. In 
fact, these productions fire in essentially the same order 
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as in a symbolic forward-chaining inference system. !5 
One can measure the total amount of order in the system 
and see that there is a qualitative change in the system 
when the first microdecisions are made — the system 
changes from a disordered phase to an ordered one. 

It is a corollary of the way this network embodies the 
problem domain constraints, and the general theorems of 
harmony theory, that the system, when given a well- 
posed problem and unlimited relaxation time, will always 
give the correct answer. So under that idealization, the 
competence of the system is described by hard con- 
straints: Ohm’s Law, Kirchoff's Law — the laws of simple 
circuits. It’s as though the model had those laws written 
down inside it. However, as in all subsymbolic systems, 
the performance of the system is achieved by satisfying a 
large set of soft constraints. What this means is that if we 
depart from the ideal conditions under which hard con- 
straints seem to be obeyed, the illusion that the system 
has hard constraints inside is quickly dispelled. The 
system can violate Ohm’s Law if it has to, but if it needn't 
violate the law, it won't. Outside the idealized domain of 
well-posed problems and unlimited processing time, the 
system gives sensible performance. It isn’t brittle the way 
that symbolic inference systems are. If the system is given 
an ill-posed problem, it satisfies as many constraints as 
possible. If it is given inconsistent information, it doesn’t 
fall flat and deduce just anything at all. If it is given 
insufficient information, it doesn’t sit there and deduce 
nothing at all. Given limited processing time, the perfor- 
mance degrades gracefully as well. All these features 
emerge “for free,” as automatic consequences of per- 
forming inference in a subsymbolic system; no extra 
machinery is added on to handle the deviations from ideal 
circumstances. 

Returning to a physics level analogy introduced in 
Section 5, we have a “quantum” system that appears to be 
“Newtonian” under the proper conditions. A system that 
has, at the microlevel, soft constraints satisfied in parallel, 
has at the macrolevel, under the right circumstances, to 
have hard constraints, satisfied serially. But it doesn’t 
really, and if you go outside the Newtonian domain, you 
see that it’s really been a quantum system all along. 

This model exemplifies the competence/performance 
distinction as it appears in the subsymbolic paradigm. We 
have an inference system (albeit a very limited one) 
whose performance is completely characterizable at the 
subconceptual-level in terms of standard subsymbolic 
computation: massively parallel satisfaction of multiple 
soft constraints. The: system is fundamentally soft. Just 
the same, the behavior of the system can be analyzed at a 
higher level, and, under appropriate situations (well- 
posed problems), and under suitable processing idealiza- 
tions (unlimited computation time), the competence of 
the system can be described in utterly different computa- 
tional terms: The hard rules of the circuit domain. The 
competence theory is extremely important, but the per- 
formance theory uses radically different computational 
mechanisms. 
The relation of the competence theory and the perfor- 

mance theory for this model can be viewed as follows. The 
behavior of the system is determined by its harmony 
function, which determines a surface or “landscape” of 
harmony values over the space of network states. In this 
landscape there are peaks where the harmony achieves its 
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maximal value: These global maxima correspond to net- 
work states representing circuit conditions that satisfy all 
the laws of physics. The competence theory nicely de- 
scribes the structure of this discrete constellation of 
global harmony maxima. But these maxima are a tiny 
subset of an extended harmony landscape in which they 
are embedded, and the network's performance is a 
stochastic search over the harmony landscape for these 
peaks. The givens of a problem restrict the search to the 
portion of the space consistent with those givens. If the 
problem is well-posed, exactly one of the global harmony 
peaks will be accessible to the system. Given unlimited 
search time, the system will provably end up at this peak: 
This is the limit in which the performance theory is 
governed by the competence theory. As the search time 
is reduced, the probability of the system’s not ending up 
at the correct harmony peak increases. If insufficient 
information is given in the problem, multiple global 
harmony peaks will be accessible, and the system will 
converge to one of those peaks. If inconsistent informa- 
tion is given in the problem, none of the global harmony 
peaks will be accessible. But within the space of states 
accessible to the network there will be highest peaks of 
harmony — these peaks are not as high as the inaccessible 
global maxima; they correspond to network states repre- 
senting circuit states that satisfy as many as possible of the 
circuit laws. As the network computes, it will converge 
toward these best-available peaks. 

Subsymbolic computation is the evolution of a dynam- 
ical system. The input to the computation is a set of 
constraints on which states are accessible to the system 
(or, possibly, the state of the system at time zero). The 
dynamical system evolves in time under its defining 
differential equations; typically, it asymptotically ap- 
proaches some equilibrium state — the output. The func- 
tion relating the system’s input to its output is its compe- 
tence theory. This function is extremely important to 
characterize. But it is quite different from the perfor- 
mance theory of the system, which is the differential 
equation governing the system’s moment-to-moment 
evolution. Relating the performance and competence of 
cognitive systems coincides with one of the principal tasks 
of dynamical systems theory: relating a system’s local 
description (differential equations) to its global (asymp- 
totic) behavior. 

9.3. Conceptual-level spreading activation. In Section 7.2 it 
was pointed out that states of a subsymbolic model can be 
approximately analyzed as superpositions of vectors with 
individual conceptual-level semantics. It is possible to 
approximately analyze connectionist dynamical systems 
at the conceptual level, using the mathematics of the 
superposition operation. If the connectionist system is 
purely linear (so that the activity of each unit is precisely a 
weighted sum of the activities of the units giving it input), 
it can easily be proved that the higher-level description 
obeys formal laws of just the same sort as the lower level: 
The computations at the subconceptual and conceptual 
levels are isomorphic. Linear connectionist systems are of 
limited computational power, however; most interesting 
connectionist systems are nonlinear. Nevertheless, most 
of these are in fact quasilinear: A unit’s value is computed 
by taking the weighted sum of its inputs and passing this 



through a nonlinear function like a threshold or sigmoid. 
In quasi-linear systems, each unit combines its inputs 
linearly even though the effects of this combination on the 
unit's activity is nonlinear. Furthermore, the problem- 
specific knowledge in such systems is in the combination 
weights, that is, the linear part of the dynamical equa- 
tions; and in learning systems, it is generally only these 
linear weights that adapt. For these reasons, even though 
the higher level is not isomorphic to the lower level in 
nonlinear systems, there are senses in which the higher 
level approximately obeys formal laws similar to the lower 
level. (For details, see Smolensky 1986b.) 

The conclusion here is a rather different one from the 
preceding section, where we saw how there are senses in 
which higher-level characterizations of certain subsym- 
bolic systems approximate productions, serial process- 
ing, and logical inference. Now what we see is that there 
are also senses in which the laws describing cognition at 
the conceptual level are activation-passing laws like those 
at the subconceptual-level but operating between units 
with individual conceptual semantics. Such semantic 
level descriptions of mental processing (which include 
local connectionist models; see note 3) have been of 
considerable value in cognitive science. We can now see 
how these “spreading activation” accounts of mental 
processing can fit into the subsymbolic paradigm. 

9.4. Schemata. The final conceptual-level notion I will 
consider is that of the schema (e.g., Rumelhart 1980). 
This concept goes back at least to Kant (1787/1963) as a 
description of mental concepts and mental categories. 
Schemata appear in many AI systems in the forms of 
frames, scripts, or similar structures: They are pre- 
packaged bundles of information that support inference 
in prototypical situations. [See also Arbib: “Levels of 
Modeling of Mechanisms of Visually Guided Behavior” 
BBS 10(3) 1987.] 

Briefly, I will summarize work on schemata in connec- 
tionist systems reported in Rumelhart, Smolensky, Mc- 
Clelland & Hinton (1986) (see also Feldman 1981; Smol- 
ensky 1986a; 1986c). This work addressed the case of 
schemata for rooms. Subjects were asked to describe 
some imagined rooms using a set of 40 features like has- 
ceiling, has-window, contains-toilet, and so on. Statistics 
were computed on these data and were used to construct 
a network containing one node for each feature as well as 
connections computed from the statistical data. 

The resulting network can perform inference of the 
same general kind as that carried out by symbolic systems 
with schemata for various types of rooms. The network is 
told that some room contains a ceiling and an oven; the 
question is, what else is likely to be in the room? The 
system settles down into a final state, and among the 
inferences contained in that final state are: the room 
contains a coffee cup but no fireplace, a coffee pot but no 
computer. 

The inference process in this system is simply one of 
greedily maximizing harmony. [Cf. BBS multiple book 
review of Sperber & Wilson’s Relevance, BBS 10(4).| To 
describe the inference of this system on a higher level, we 
can examine the global states of the system in terms of 
their harmony values. -How internally consistent are the 
various states in the space? It’s a 40-dimensional state 
space, but various 2-dimensional subspaces can be se- 
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lected, and the harmony values there can be graphically 
displayed. The harmony landscape has various peaks; 
looking at the features of the state corresponding to one of 
the peaks, we find that it corresponds to a prototypical 
bathroom; others correspond to a prototypical office, and 
so on for all the kinds of rooms subjects were asked to 
describe. There are no units in this system for bathrooms 
or offices — there are just lower-level descriptors. The 
prototypical bathroom is a pattern of activation, and the 
system’s recognition of its prototypicality is reflected in 
the harmony peak for that pattern. It is a consistent, 
“harmonious” combination of features: better than neigh- 
boring points, such as one representing a bathroom 
without a bathtub, which has distinctly lower harmony. 

During inference, this system climbs directly uphill on 
the harmony landscape. When the system state is in the 
vicinity of the harmony peak representing the pro- 
totypical bathroom, the inferences it makes are governed 
by the shape of the harmony landscape there. This shape 
is like a schema that governs inferences about bathrooms. 
(In fact, harmony theory was created to give a connec- 
tionist formalization of the notion of schema; see Smol- 
ensky, 1984b; 1986a; 1986c.) Looking closely at the har- 
mony landscape, we can see that the terrain around the 
“bathroom” peak has many of the properties of a bath- 
room schema: variables and constants, default values, 
schemata embedded inside schemata, and even cross- 
variable dependencies, which are rather difficult to incor- 
porate into symbolic formalizations of schemata. The 
system behaves as though it had schemata for bathrooms, 
offices, and so forth, even though they are not really there 
at the fundamental level: These schemata are strictly 
properties of a higher-level description. They are infor- 
mal, approximate descriptions — one might even say they 
are merely metaphorical descriptions — of an inference 
process too subtle to admit such high-level descriptions 
with great precision. Even though these schemata may 
not be the sort of object on which to base a formal model, 
nonetheless they are useful descriptions that help us 
understand a rather complex inference system. 

9.5. Summary. In this section the symbolic structures in 
the intuitive processor have been viewed as entities in 
high-level descriptions of cognitive dynamical systems. 
From this perspective, these structures assume rather 
different forms from those arising in the symbolic para- 
digm. To sum up: 

(27) a. Macroinference is not a process of firing a symbolic 
production but rather of qualitative state change in a 
dynamical system, such as a phase transition. 

. Schemata are not large symbolic data structures but 
rather the potentially intricate shapes of harmony 
maxima. 

. Categories (it turns out) are attractors in connectionist 

dynamical systems: states that “suck in” to a common 
place many nearby states, like peaks of harmony 

functions. 
. Categorization is not the execution of a symbolic al- 

gorithm but rather the continuous evolution of the 
dynamical system — the evolution that drives states 
into the attractors that maximize harmony. 

. Learning is not the construction and editing of for- 
mulae, but rather the gradual adjustment of connec- 
tion strengths with experience, with the effect of 
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slowly shifting harmony landscapes, adapting old and 
creating new concepts, categories, and schemata. 

The heterogeneous assortment of high-level mental 
structures that have been embraced in this section sug- 
gests that the conceptual-level lacks formal unity. This is 
precisely what one expects of approximate higher-level 
descriptions, which, capturing different aspects of global 
properties, can have quite different characters. Accord- 
ing to the subsymbolic paradigm, the unity underlying 
cognition is to be found not at the conceptual level, but 
rather at the subconceptual level, where relatively few 
principles in a single formal framework lead to a rich 
variety of global behaviors. 

10. Conclusion 

In this target article I have not argued for the validity of a 
connectionist approach to cognitive modeling, but rather 
for a particular view of the role a connectionist approach 
might play in cognitive science. An important question 
remains: Should the goal of connectionist research be to 
replace other methodologies in cognitive science? Here it 
is important to avoid the confusion discussed in Section 
2.1. There I argued that for the purpose of science, it is 
sound to formalize knowledge in linguistically expressed 
laws and rules — but it does not follow therefore that 
knowledge in an individual's mind is best formalized by 
such rules. It is equally true that even if the knowledge in 
a native speaker's mind is well formalized by a huge mass 
of connection strengths, it does not follow that the science 
of language should be such a set of numbers. On the 
contrary, the argument of Section 2.1 implies that the 
science of language should be a set of linguistically ex- 
pressed laws, to the maximal extent possible. 

The view that the goal of connectionist research should 
be to replace other methodologies may represent a naive 
form of eliminative reductionism. Successful lower-level 
theories generally serve not to replace higher-level ones, 
but to enrich them, to explain their successes and 
failures, to fill in where the higher-level theories are 
inadequate, and to unify disparate higher-level accounts. 
The goal of subsymbolic research should not be to replace 
symbolic cognitive science, but rather to explain the 
strengths and weaknesses of existing symbolic theory, to 
explain how symbolic computation can emerge out of 
nonsymbolic computation, to enrich conceptual-level re- 
search with new computational concepts and techniques 
that reflect an understanding of how conceptual-]2vel 
theoretical constructs emerge from subconceptual com- 
putation, to provide a uniform subconceptual theory from 
which the multiplicity of conceptual theories can all be 
seen to emerge, to develop new empirical methodologies 
that reveal subconceptual regularities of cognitive behav- 
ior that are invisible at the conceptual level, and to 
provide new subconceptual-level cognitive principles 
that explain these regularities. 

The rich behavior displayed by cognitive systems has 
the paradoxical character of appearing on the one hand 
tightly governed by complex systems of hard rules, and 
on the other to be awash with variance, deviation, excep- 
tion, and a degree of flexibility and fluidity that has quite 
eluded our attempts at simulation. Homo sapiens is the 
rational animal, with a mental life ruled by the hard laws 
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of logic — but real human behavior is riddled with strong 
nonrational tendencies that display a systematicity of 
their own. Human language is an intricate crystal defined 
by tight sets of intertwining constraints — but real lin- 
guistic behavior is remarkably robust under deviations 
from those constraints. This ancient paradox has pro- 
duced a deep chasm in both the philosophy and the 
science of mind: on one side, those placing the essence of 
intelligent behavior in the hardness of mental compe- 
tence; on the other, those placing it in the subtle softness 
of human performance. 

The subsymbolic paradigm suggests a solution to this 
paradox. It provides a formal framework for studying how 
a cognitive system can possess knowledge which is funda- 
mentally soft, but at the same time, under ideal circum- 
stances, admit good higher-level descriptions that are 
undeniably hard. The passage from the lower, subcon- 
ceptual level of analysis to the higher, conceptual level 
naturally and inevitably introduces changes in the char- 
acter of the subsymbolic system: The computation that 
emerges at the higher level incorporates elements with a 
nature profoundly different from that of the fundamental 
computational processes. 

To turn this story into a scientific reality, a multitude of 
serious conceptual and technical obstacles must be over- 
come. The story does, however, seem to merit serious 
consideration. It is to be hoped that the story's appeal will 
prove sufficient to sustain the intense effort that will be 
required to tackle the obstacles. 
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NOTES 

1. In this target article, when interpretation is used to refer 
to a process, the sense intended is that of computer science: the 
process of taking a linguistic description of a procedure and 
executing that procedure. 

2. Consider, for example, the connectionist symposium at 
the University of Geneva held Sept. 9, 1986. The advertised 
program featured Feldman, Minsky, Rumelhart, Sejnowski, 
and Waltz. Of these five researchers, three were major contrib- 
utors to the symbolic paradigm for many years (Minsky 1975; 
Rumelhart 1975; 1980; Waltz 1978). 

3. This is an issue that divides connectionist approaches. 
“Local connectionist models” (e.g., Dell 1985; Feldman 1985; 
McClelland & Rumelhart 1981; Rumelhart & McClelland 1982; 
Waltz & Pollack 1985) accept (9), and often deviate significantly 
from (8a). This approach has been championed by the Rochester 
connectionists (Feldman et al. 1985). Like the symbolic para- 
digm, this school favors simple semantics and more complex 
operations. The processors in their networks are usually more 
powerful than those allowed by (8); they are often like digital 
computers running a few lines of simple code. (“If there is a 1 on 
this input line then do X else do Y,” where X and Y are quite 
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different simple procedures; e.g., Shastri 1985.) This style of 
connectionism, quite different from the subsymbolic style, has 
much in common with techniques of traditional computer sci- 
ence for “parallelizing” serial algorithms by decomposing them 
into routines that can run in parallel, often with certain syn- 
chronization points built in. The grain size of the Rochester 
parallelism, although large compared to the subsymbolic para- 
digm, is small compared to standard parallel programming: The 
processors are allowed only a few internal states and can trans- 
mit only a few different values (Feldman & Ballard 1982). 

4. As indicated in the introduction, a sizeable sample of 
research that by and large falls under the subsymbolic paradigm 
can be found in the books, Parallel Distributed Processing: 
Explorations in the Microstructure of Cognition: Rumelhart, 
McClelland, and the PDP Research Group 1986; McClelland, 
Rumelhart, and the PDP Research Group 1986. While this work 
has since come to be labelled “connectionist,” the term “PDP” 
was deliberately chosen to distinguish it from the localist ap- 
proach, which had previously adopted the name “connec- 
tionist” (Feldman & Ballard 1982). 

5. The phrase is Roger Schank’s, in reference to “parallel 
processing” (Waldrop 1984). Whether he was referring to con- 
nectionist systems I do not know; in any event, I don’t mean to 
imply that the grounds for his comment are addressed here. 

6. In this section the disclaimer in the introduction is particu- 
larly relevant: The arguments I offer are not intended to repre- 
sent a consensus among connectionists. 

7. For example, two recently discovered learning rules that 
allow the training of hidden units, the Boltzmann machine 
learning procedure (Hinton & Sejnowski 1983a) and the back- 
propagation procedure (Rumelhart, Hinton & Williams 1986), 
both involve introducing computational machinery that is moti- 
vated purely mathematically; the neural counterparts of which 
are so far unknown (unit-by-unit connection strength symme- 
try, alternating Hebbian and antiHebbian learning, simulated 
annealing, and backwards error propagation along connections 
of identical strength to forward activation propagation). 

8. A notable exception is Touretzky and Hinton 1985. 
9. Furthermore, when a network makes a mistake, it can be 

told the correct answer, but it cannot be told the precise rule it 
violated. Thus it must assign blame for its error in an undirected 
way. It is quite plausible that the large amount of training 
currently required by subsymbolic systems could be signifi- 
cantly reduced if blame could be focused by citing violated 
rules. 

10. There is a trade-off between the number of goal condi- 
tions one chooses to attribute to a system, and the correspond- 
ing range of tolerable environmental conditions. Considering a 
large variety of environmental conditions for a river, there is 
only the “flow downhill” goal; by appropriately narrowing the 
class of conditions, one can increase the corresponding goal 
repertoire. A river can meet the goal of carrying messages from 
A to B, if A and B are appropriately restricted. But a homing 
pigeon can meet this goal over a much greater variety of 
situations. 

11. Consider a model that physicists like to apply to “neural 
nets” — the spin glass (Toulouse et al. 1986). Spin glasses seem 
relevant because they are dynamical systems in which the 
interactions of the variables (“spins”) are spatially inhom- 
ogeneous. But a spin glass is a system in which the interactions 
between spins are random variables that all obey the same 
probability distribution p: The system has homogeneous inhom- 
ogeneity. The analysis of spin glasses relates the properties of p 
to the bulk properties of the medium as a whole; the analysis of a 
single spin subject to a particular set of inhomogeneous interac- 
tions is regarded as quite meaningless, and techniques for such 
analysis are not generally developed. 

12. This problem is closely related to the localization of a 
failure of veridicality in a scientific theory. Pursuing the remarks 
of Section 2.1, scientific theories can be viewed as cognitive 

systems, indeed ones having the prediction goal. Veridicality is 
a property ofa scientific theory as a whole, gauged ultimately by 
the success or failure of the theory to meet the prediction goal. 
The veridicality of abstract representations in a theory derives 
solely from their causal role in the accurate predictions of 
observable representations. 

13. For example, in both harmony theory and the Boltzmann 
machine, discrete units have typically been used because (1) 
discrete units simplify both analysis and simulation; (2) for the 
quadratic harmony or energy functions that are being op- 
timized, it can be proved that no optima are lost by simplifying 
to binary values; (3) these models’ stochastic search has a 
“jumpy” quality to it anyway. These, at least, are the computa- 
tional reasons for discrete units; in the case of the Boltzmann 
machine, the discrete nature of action potentials is also cited as a 
motivation for discrete units (Hinton et al. 1984). 

14. Alternatively, if the original harmony/Boltzmann ap- 
proach is extended to include nonquadratic harmony/energy 
functions, nonbinary optima appear, so again one switches to 
continuous units (Derthick, in progress; Smolensky, in 
progress). 

15. Note that these (procedural) “productions” that occur in 
intuitive processing are very different from the (declarative) 
production rules of Section 6 that occur in conscious rule 
application. 

Open Peer Commentary 

Commentaries submitted by the qualified professional readership of 
this journal will be considered for publication in a later issue as 
Continuing Commentary on this article. Integrative overviews and 
syntheses are especially encouraged. 

On the proper treatment of the connection 
between connectionism and symbolism 

Louise Antony and Joseph Levine 
Department of Philosophy & Religion, North Carolina State University, 

Raleigh, N. C. 27695 

Smolensky is concerned to establish two claims: first, that there 
is a genuine conflict between the connectionist and the classical 
computationalist (symbolic) approaches to the study of mind; 
and second, that the conflict consists in a disagreement about 
the level of analysis at which it is possible to obtain an accurate 
and complete account of cognitive processing. These two 
claims, we contend, are incompatible. If the difference between 
connectionism and symbolism really concerns levels of theoriz- 
ing, then there is no incompatibility. If there is a genuine 
conflict, then talk of alternative levels or degrees of approxima- 
tion is either misleading or wrong. 

In Smolensky’s picture, connectionism and symbolism share 
a problem domain: They both seek to explain cognitive pro- 
cesses. Moreover, they both accept an initial analysis of the 
problem domain effected at what Smolensky calls the concep- 
tual level. At this level, cognitive processes are characterized as 
the operation of rules defined over representations. This level 
provides a good approximation of conscious cognitive processes, 
and a passable account of intuitive processes. It is on the issue of 
how to provide more precise accounts of intuitive processing 
that the two paradigms diverge: The symbolists posit the same 
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kinds of entities and mechanisms described at the conceptual 
level; the subsymbolists shift domains downward, to the sub- 
conceptual level, where neither the primitive entities nor the 
basic operations map onto anything at the conceptual level. 

But the nature of this downshift is obscure, and attempts to 
clarify it make problems for one or the other of Smolensky’s 
central claims. One suggested mark of a domain shift is seman- 
tic: a shift from the consciously accessible concepts encoded in 
natural language to finer-grained microfeatures.! But this 
won't do; many paradigmatically symbolic cognitive theories 
propose computational processes defined over elements of 
both sorts. Indeed, the positing of unconscious manipulations 
of elements with semantics unavailable to conscious introspec- 
tion is part and parcel of most symbolic cognitive accounts. 
Decompositional semantics, for example, hypothesized that 
the semantic primitives of natural language (horse, kill) were 
subconsciously decomposed into a set of conceptual primitives, 
which included things such as categorized variables, or mark- 
ers like +inchoative, that few native speakers would own. 
Phonology, which constructs morphemes out of phonemes and 
phonemes out of phones, provides another example. Any such 
theory may be wrong (compositional semantics almost certainly 
is) but each is symbolic par excellence. 

The mark of a domain shift, therefore, cannot be purely 
semantic. The other possibility is that a domain shift involves a 
change in the kinds of mechanisms posited. This criterion 
reveals a deep difference between the two paradigms. The 
central mechanism of the symbolic paradigm is the structure- 
sensitive operation. Such mechanisms are posited at every 
genuinely cognitive level of theorizing. In the connectionist 
paradigm, however, structure-sensitive operations posited at 
the conceptual level provide only a rough approximation of 
actual cognitive processing. A full and accurate account can be 
found only at the subconceptual level, where symbolic pro- 
cesses are replaced by numerical functions describing state 
changes in a dynamical system. 
We know that the theory of the ultimate physical implemen- 

tation of any symbolic process will certainly need to hypothesize 
nonsyntactic mechanisms. But Smolensky maintains that con- 
nectionism should not be regarded as simply an implementation 
theory for symbolic paradigm theories. Connectionist theories, 
unlike theories of implementation, are cognitive. Connec- 
tionism and symbolism offer two competing models of the same 
cognitive capacities, models that posit strikingly different mech- 
anisms to explain the input-output functions definitive of those 
capacities. 

The relation between the two paradigms, Smolensky argues, 
is analogous to the relation between classical and quantum 
mechanics: The symbolic model gives an approximately true 
description of the goings-on precisely characterized by a mathe- 
matical description of the dynamical systems that actually run 
intuitive cognitive processes. But there’s the rub. Given the 
radical difference between the mechanisms and mode of expla- 
nation posited by the symbolic and the connectionist paradigms, 
what could it mean to say that, from a connectionist perspective, 
a symbolic theory is even “approximately” true? 

The symbolic paradigm claims to explain cognitive phe- 
nomena by hypothesizing the real existence of structured repre- 
sentations, and operations defined over them. One thing it 
could mean to say — that a symbolic model is only approximately 
correct — is that the model is an idealization, an abstract 
characterization of a system, which, once physically realized, is 
subject to glitches deriving from the physical nature of the 
realizing medium. (Economic theories, for example, usually 
assume higher quality hardware than is generally available.) 
Alternatively, one could mean that the model describes only 
one subsystem of a complex system, and thus cannot be used to 
predict precisely the behavior of the whole. (This is our under- 
standing — contrary to Smolensky’s — of the relation Chomsky 
posits between linguistic competence and linguistic perfor- 
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mance.) [See Chomsky: “Rules and Representations” BBS 3(1) 
1980. ] 
What one shouldn’t mean is simply that the model gets the 

input-output relations right. But if Smolensky is right, if con- 
nectionist models are not models of the implementation of 
symbolic processes, that’s all it could mean to say that symbolic 
theories are approximately true; for there are no structure- 
sensitive operations in reality, and there are no structured 
constituents. Cognitive models are only correct (and then only 
approximately so) in their mappings of inputs to outputs. Their 
explanations of why those mappings hold are fantasy. 

Smolensky’s allowance that a sort of constituent structure can 
be read into connectionist networks makes no difference. The 
crucial question is whether that structure is implicated in the 
explanation of cognitive processes or not. If it is not, then the 
appearance of constituent structure is accidental and unex- 
plained, as indeed it ought to be given the nature of connec- 
tionist mechanisms.2 If, on the other hand, constituent struc- 
ture is built into the operations of the network — if, say, the 
initial connection strengths and learning functions serve to 
ensure that constituency relations are respected in state transi- 
tions, then the organization of the networks is constrained by 
the symbolic processes posited at the conceptual level. In that 
case, the network would be simply an implementation of the 
symbolic processes. 

In sum: If the connectionist and symbolic paradigms are 
indeed incompatible, it is because at the same explanatory level 
they disagree fundamentally about the nature of mental pro- 
cesses. If, on the other hand, both models yield explanatory 
insight into the workings of the mind, though at different levels 
of description, then we must understand connectionist models 
as implementation models.3 

NOTES 
1. This criterion is suggested by Smolensky’s remarks in sect. 3, para. 

2; and also by the discussion of reduction and instantation in sect. 5, 
para. 6. 

2. Fodor and Pylyshyn develop this point in detail in “Connec- 
tionism and Cognitive Architecture: A Critical Analysis” (unpublished 
manusciipt). Smolensky explicitly addresses their arguments in sect. 
7.1., but, in our view, does not answer them adequately. 

3. We would like to thank David Auerbach and Harold Levin for 
helpful discussions of this paper. 

Connectionism and interlevel relations 

William Bechtel 
Department of Philosophy, Georgia State University, Atlanta, Ga. 30303 

Smolensky’s proposal to treat connectionist models as applying 
to an intermediate (“subconceptual” level) between neural 
models and conceptual models is a very attractive one. I am 
troubled, though, by the way he articulates the relation among 
the three levels. There seem to be two different ways these 
levels relate: The higher level may simply provide a more 
abstract characterization of the lower level, or it may actually 
constitute a higher level in a part—whole hierarchy. There are 
important differences between these types of relationships. To 
begin, one is a relationship between theories, whereas the other 
represents an ontological distinction in nature which has conse- 
quences for theorizing. I suspect that for Smolensky the rela- 
tionship between the neural and the subconceptual level is of 
the first sort, and that between the subconceptual and the 
conceptual level is of the second sort. These types of rela- 
tionships, though, have different consequences. 

Consider first the relation between neural and subconceptual 
levels. Smolensky characterizes the connectionist models at the 
subconceptual level as syntactically more like neural models but 
semantically more like symbolic models. The reason they are 
semantically more like symbolic models is that current neural 
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theories lack an adequate semantic account. Below I shall claim 
that any semantic account developed for the neural level will 
also be similar to that of symbolic accounts. The critical issues for 
level relations arise on the syntactic side. There are a number of 
differences, Smolensky notes, between the syntax of neural 
processing models and that of connectionist models, and he 
even comments that currently “architectural decisions [for con- 
nectionist systems] seem to be driven more and more by 
mathematical considerations and less and less by neural ones” 
(sect. 4, para. 9). These differences could support the claim that 
we are dealing with different levels of organization in nature. 
But this raises the question: What do connectionist systems 
model if not the activity of neuronal networks? There may be 
units in the brain at a level above that of neural networks which 
fit the characteristics of the connectionist architecture better 
than neural networks, but I do not see any reason to expect this 
result. Moreover, in his discussion of how models like NETtalk 
can inform us of general characteristics of a wide class of 
systems, Smolensky gives us reason to think that connectionist 
accounts are simply more abstract and currently more tractable 
than neural accounts. They may provide us with reasonably 
accurate approximations of the actual performance of neural 
networks, which will enable us to carry on with theorizing about 
mental phenomena in the absence of detailed neural models. 
Although I do not find this problematic, it does mean that 
connectionist and neural theories (when developed in order to 
understand cognitive performance) are characterizing the same 
phenomena in nature. It may prove useful at a later stage in the 
inquiry to amend connectionist models to better accommodate 
knowledge of the nervous system, and then the distinction 
between neural and cognitive models may largely disappear. 

Now consider the relationship between connectionist and 
symbolic models. Here we seem to be dealing with a genuine 
part—whole relation. The interactions between the units in the 
connectionist model give rise to roughly stable patterns, which 
are then assigned the semantics of conscious concepts (see thesis 
8b). Smolensky discusses the relationships between connec- 
tionist and conceptual models in the same way he discussed the 
relationship between neural and connectionist accounts — the 
accounts are approximately equivalent. Moreover, for him it is 
important that the agreement is only approximate and that 
symbolic processes are not directly implementable in the sub- 
conceptual system (thesis 8c). What does this say about the 
status of the conceptual level? 

There are, as Smolensky notes at the beginning of the target 
article, a variety of human endeavors (particularly interpersonal 
activities, such as scientific investigations) in which symbols and 
conscious symbol manipulation are important.! If we take a 
realist view of the symbols and symbol processing that occur in 
these activities, we should expect them to be implemented in 
lower level activity: These symbols and symbol processing 
activities should be the causal product of the processes at the 
lower level and thus implemented by the lower level processes. 
But thesis 8c says that these symbolic processes are not directly 
implementable, so how do they occur? Are they real processes 
in nature? It is this which seems to make connectionism a 
version of eliminative materialism. 

There is a way to adopt both this realistic view of the relation 
of explanatory accounts at different levels and Smolensky’s 
thesis 8c. In most genuine interlevel relationships in science, 
study at one level tends to guide revision in theorizing at the 
other level. If this were to happen in the current case, we should 
expect work on the subconceptual level to lead to revisions in 
our understanding of the conceptual level. Thesis 8c should 
then be viewed as applying to current symbolic accounts, not to 
the accounts revised in light of work at the subconceptual level. 
One example of the changes that might result is a revision in the 
view of the concepts that figure in conscious thinking as fixed, 
stable units that are stored in memory and retrieved into 
working memory where they are manipulated by rules. 

Connectionism may lead us to view concepts as far more 
temporary patterns, which change over time as a result of 
learning or other activity in the system. (Barsalou, 1986 and in 
press, has already produced evidence of a variability in concepts 
that would fit such an analysis.) Thus, if the relation of the 
subconceptual to the symbolic is really an interlevel one, we 
should not treat one account as simply a rough approximation of 
the other, to be surrendered if we develop a better approxima- 
tion, but we should view the accounts as descriptions of different 
phenomena related in a part—whole manner, with the goal being 
a causal explanation of the higher level phenomena in terms of 
the lower (Bechtel 1988). 

In closing I wish to return to something I noted above: One 
reason connectionist accounts are very like conceptual-level 
accounts semantically is that any semantic account (even one at 
the neural level) will be quite similar to that at the conceptual 
level. We can see this by considering Smolensky’s brief remarks 
about the semantics of the subconceptual level. Our semantic 
interpretations of processes in a system at any level depend on 
how those processes enable the system to meet its environmen- 
ial goals. Interpretations of this sort can provide the intentional 
perspective for the subconceptual level that Smolensky earlier 
suggests is lacking for connectionist systems. To capture what is 
often viewed as a defining feature of intentional systems — the 
ability of their states to be about nonexisting phenomena — we 
need to bear in mind that no such system is perfectly adapted to 
its environment any more than any organism is; our intentional 
interpretation of its states will also have to show how it fails to 
satisfy its environmental goals (Bechtel 1985). 

NOTE 
1. My concern is only with conscious rule processing, not with 

intuitive processing. The study of the latter, for which rule-processing 
accounts have been generally inadequate, should perhaps be trans- 
ferred to the subconceptual level. 

Two constructive themes 

Richard K. Belew 
Computer Science and Engineering Department, University of California at 
San Diego, La Jolla, Calif. 92093 

Connectionism is definitely hot these days, and one of the 
obvious questions is how these models relate to previous ones. 
With this target article, Smolensky clearly pushes the debate to 
the next plateau. He argues that there is an important, valid 
level of cognitive modeling below the conventional symbolic 
level yet above the level of neural modeling. If his paper has a 
flaw, it is that Smolensky spends more time rhetorically delin- 
eating how his subsymbolic models are not either symbolic or 
neural, rather than constructively emphasizing those charac- 
teristics thot make subsymbolic models important and valid. He 
does mention some of these characteristics as subthemes, how- 
ever, and I think it is worth emphasizing two in particular. 

One of Smolensky’s first distinctions is between cultural and 
individual knowledge. Individual knowledge, that information 
used by a single person to help him function in the world, has 
typically been the provenance of cognitive science. Smolensky 
identifies a second type of cultural knowledge that groups of 
people collectively codify, share, learn, and use. He also makes 
the strong claim (his point 2b) that “We can view the top-level 
conscious processor of individual people as a virtual machine — 
the conscious rule interpreter — and we can view cultural 
knowledge as a program running on that machine” (sect. 2.1., 
para. 4). Smolensky then argues that the symbolic tradition in 
cognitive science — because of its preoccupation with cognitive 
processes of which we are consciously aware — has come to 
model the form of cultural rather than individual knowledge. 
After noting that “the constraints on cultural knowledge for- 
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malization are not the same as those on individual knowledge 
formalization,” Smolensky then infers that a large body of 
subconscious cognitive phenomena is ripe for subsymbolic 
modeling. 
Two observations about this argument should be made. First, 

we can accept the importance of Smolensky’s distinction be- 
tween cultural and individual knowledge without accepting this 
particular view of their relationship. I too have argued for the 
importance of cultural knowledge to cognitive science (Belew 
1986, Ch. 8), but although Smolensky’s hypothesis regarding 
the conscious rule interpreter is intriguing it is currently also 
unsubstantiated and, I fear, oversimplified. 

Second, Smolensky fails to draw an important conclusion 
from this argument, namely, that subsymbolic models have a 
distinct disadvantage to symbolic ones in that they cannot easily 
be assimilated into the cultural knowledge acquisition process 
known as science. There is bound to be a bias on the part of 
unwary cognitive scientists toward “linguistic,” symbolic mod- 
els simply because these are more easily communicated from 
one scientist to another and hence easily considered more 
“scientific. ” 

Subsymbolic models rest on the assumption that some of the 
most interesting cognitive phenomena cannot be modeled in 
terms of symbol manipulation (Smolensky presents this as point 
7c); that is, the rejection of Newell’s Physical System Hypoth- 
esis (1980) (which Smolensky effectively restates as his straw- 
man point 3a). These models must therefore be stated in non- 
linguistic terms, typically mathematical analyses, that are much 
more difficult for most cognitive scientists to appreciate. Such a 
bias is understandable, but if we want at least to allow for the 
possibility of subsymbolic models that cannot be expressed in 
easily understood symbols, we must be willing to dig in and 
understand the mathematics. 

Luckily, one of the reasons for the current connectionist 
renaissance is that Smolensky and others have found new ways 
to make their mathematics more comprehensible. In particular, 
a key characteristic of these models is that they explore ways in 
which the dynamic rather than the structural characteristics of a 
system can contribute to intelligent behavior. This is a second 
critically important subtheme of Smolensky’s analysis. 

It seems quite obvious that AI and cognitive science would 
not be here if not for the computer. More insidious is the way 
our models of cognition have suffered as a result of the “von 
Neumann bottleneck” of sequential computation, imposed until 

_very recently by existing computers. Of course, Newell and 
others have argued forcibly for the need to describe cognition as 
a basically sequential process (primarily because all cognitive 
systems must act in the sequential flow of time), but the 
correspondence between their sequential simulations and the 
availability of only sequential von Neumann computers is a bit 
too neat to be coincidental. 

One of the most striking features of sequential models is their 
particularly simple dynamics: One thing happens at a time, and 
at one place. Using only this spare dynamic model, cognitive 
models and AI knowledge representations have focused on 
building elaborate structural systems. We have come to believe 
that building more intelligent systems means designing their 
knowledge structures more effectively. 

One of connectionism’s most distinctive features is that it 
views the dynamics of the cognitive system as just as important 
as its structure. In fact, by current knowledge representation 
standards, connectionist nets are particularly simple: weighted 
digraphs. How could this simple representation support intel- 
ligent behavior when we still have problems getting our most 
sophisticated semantic networks to work! The connectionist 
answer is that the current division between structure and 
dynamics is inappropriate. Much of our cognitive activity can 
and should be described in dynamical terms (the spreading of 
activation, the modulation of activity, etc.) and our models must 
be dynamically sophisticated as well. 
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I believe it is no coincidence that two of the most outspoken 
proponents of subsymbolic models, Smolensky and Hofstadter, 
were trained originally in physics, a science in which the 
structure and dynamics of systems are inextricably linked. A 
major contribution of these scientists has been to bring, from 
physics, the descriptive language of dynamical systems. This has 
begun to allow us to constructively model (and describe to other 
scientists) dynamical properties of our models that would other- 
wise be beyond our grasp. 

It is important not to take Smolensky and connectionism too 
literally. Smolensky’s “connectionist dynamical system” hy- 
pothesis (his point 7a) assumes a particular structural represen- 
tation, a weighted digraph with a vector of activities, but many 
of the strengths and weaknesses of this computational system 
are exhibited by other representations, for example Holland's 
Classifier System (Holland et al. 1986). The Classifier System 
uses a representation, derived from production rules, that 
cannot be called connectionist but that is properly considered 
subsymbolic. A careful comparison of these two representations 
would not be appropriate here; I simply note that both repre- 
sentations embrace complex dynamic processing as an integral 

part of their operation. From the perspective of these newer 
representations, a key issue separating sequential, symbolic 
accounts from dynamical, subsymbolic ones is how sequential 
action emerges from parallel cogitation. 

Smolensky’s target article obviously does not answer this 
ambitious question; his purpose is simply “to formulate rather 
than argue the scientific merits of a connectionist approach.” He 
has succeeded ably at outlining some basic tenets of subsym- 
bolic cognitive modeling, and the stage is now set for further 
debate. 

information processing abstractions: The 
message still counts more than the medium 

B. Chandrasekaran, Ashok Goel, and Dean Allemang 
Laboratory for Artificial intelligence Research, Department of Computer 

and Information Science, Ohio State University, Columbus, Ohio 43210 

Smolensky’s target article has two major virtues. First, it is a 
very clear presentation of the essential commitments of connec- 
tionism in the subsymbolic paradigm. Second, his claims on its 
behalf are relatively modest: He identifies one level, viz. the 
subconceptual level, as the appropriate province for connec- 
tionism, while leaving other levels as the domains for other 
kinds of theories. We find ourselves in agreement with Smol- 
ensky on several counts: 

A satisfactory account of cognitive phenomena has to be 
representational. 

Subsymbolic models are not merely implementations of sym- 
bolic models just because continuous functions can be simulated 
by Turing machines. As one of us argues in Chandrasekaran 
(1988), connectionist and symbolic methods of computing a 
function may make significantly different representational com- 
mitments about what is being represented, and thus may con- 
stitute different theories about an information process. 

Finally, theories which use only conceptual entities accessi- 
ble to the conscious level are likely to be inadequate to cover the 
range of phenomena in cognition. In fact, we regard much of the 
work on knowledge representation in the logic paradigm, where 
“thinking” is closely associated with the phenomena and mecha- 
nisms of conscious reasoning, as suffering from this problem. 

However, Smolensky is not making enough of a distinction 
between what is being computed and the mechanisms of that 
computation. It is true that connectionism offers a medium of 
representation and mechanisms of processing different from 
those of the traditional symbolic paradigm. We believe, howev- 
er, that computational leverage is more in the content of repre- 
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sentation than in the representational medium or processing 
mechanism. In this we follow Marr's (1982) proposal for an 
information processing (IP) level description of a theory, that 
specifies three kinds of information: (1) what is available at the 
input to a process, (2) what is needed at the output, and (3) what 
are the kinds of information that need to be made available as 
part of the process. The content of the theory is this set of 
information processing abstractions by means of which the input 
can be transformed to the output. Commitments about how 
these abstractions are represented and processed are made at 
the next level, where a number of symbolic or connectionist 
alternatives may be proposed. In contrast to Smolensky’s pro- 
posal about how to carve up the competence/performance 
distinction, we suggest that the competence is represented by 
the IP abstraction level, and connectionist networks or symbolic 
algorithms are alternate realizations of this theory, leading to 
possible differences in the details of performance. 

Viewed in this light, what is significant about the two tense- 
learning examples contrasted by Smolensky is that they propose 
different sets of IP abstractions: One set seems too close to the 
conscious level to be quite right, while the other proposes 
abstractions (e.g., “rounded”) that are genuinely theoretical 
constructs and not consciously accessible. Good theories of 
complex phenomena are apt to involve primitives which are not 
accessible to naive consciousness. This is no less true of cogni- 
tion than it is of physics. If the connectionist theory of learning of 
tense-endings has good performance, it is due as much to the 
particular IP abstractions that are represented in it as it is due to 
the medium of representation and the mechanisms. The issue of 
whether the primitive objects are close to consciousness is 
orthogonal to whether they are represented and manipulated 
connectionistically or algorithmically. Smolensky’s conflation of 
these two issues is a special case of the general instance, 
common to all stripes of AI, of ascribing credit to mechanisms 
when quite a bit of it has to go to the IP theory that is being 
realized by the mechanisms. For instance, the content contribu- 
tions of many nominally symbolic theories in Al are really at the 
level of IP abstractions to which they make a commitment, and 
not at the level of their implementation in a symbol structure. 
Symbols have often merely stood in for the abstractions that 
need to be captured one way or another. Note that we are not 
claiming that the medium of representation and manipulation 
does not make for important differences, but that attribution of 
the differences to the medium requires first an analysis of the 
role played by the IP abstractions. 

Of course, if connectionism can provide learning mechanisms 
such that an agent can start out with few such abstractions and 
can learn to perform the IP function in a reasonable amount of 
time, then connectionism can sidestep most of the representa- 
tional problems. The fundamental problem of complex learning 
is the credit (or blame) assignment problem, which Smolensky 
admits is very hard, but then somewhat startlingly claims has 
been largely solved by connectionism. However, if one looks at 
particular connectionist schemes that have been proposed for 
learning tasks, a significant part of the IP abstractions are built 
into the architecture in the choice of input, feedback directions, 
allocation of subnetworks, and the semantics that underlie the 
choice of layers, and so on. The inputs and the initial configura- 
tion incorporate a sufficiently large part of the requisite IP 
abstractions which constrain the search space, so that what is left 
to be learned, while nontrivial, is proportionately small. In fact, 
the search space is small enough so that statistical associations, 
for which connectionist learning mechanisms are particularly 
suited, can do the trick. This is not to downplay the contribu- 
tions of the various propagation schemes, but to emphasize the 
role of the IP abstractions implicit in the networks even before 
the learning mechanisms begin to operate. In short, while 
connectionist mechanisms may be able to explain how learning 
can be accomplished as a series of searches in appropriate 
parameter spaces, they do not absolve the theorist of the 

responsibility to provide sufficient content to the theory in the 
form of a priori commitments made by the architecture. 

Smolensky’s conscious/intuitive and symbolic/connectionist 
distinctions again are orthogonal. Theory making with entities at 
the conscious level alone is not a problem of symbolic theories 
per se. For example, Schank’s (1972) Conceptual Dependency 
theories and our own work on generic tasks in problem solving 
in Chandrasekaran (1987), both of which do noc correspond to 
the terms in conscious reasoning. A major task of cognitive 
theory making is finding the right set of primitive terms, con- 
scious, intuitive, or otherwise, that need to be represented. 
This task doesn’t change, whether or not one’s approach is 
“connectionist. 

We regard connectionism as an important corrective to the 
extreme view of the cognitive processor as nothing but a Turing 
machine. Connectionism offers intriguing insights into how 
some objects in symbolic theories, such as frames and schemas, 
may be composed at “run-time” from more diffuse connectionist 
representations. Our perspective on how the symbolic para- 
digm and connectionism coexist is a little different from that of 
Smolensky. Connectionist and symbolic computationalist phe- 
nomena have different but overlapping domains. Connectionist 
architectures seem to be especially good in providing some basic 
functions, such as retrieval, matching and low-level parameter 
learning, with intuitively desirable “micro” performance fea- 
tures such as speed and softness. Symbolic cognitive theories 
can take advantage of the availability of connectionist realiza- 
tions of these functions in order to achieve greater fidelity in 
their modeling. Even here, the content theories have to be done 
just right for the mechanisms to work. For example, in retrieval, 
the basic problem will remain encoding of objects in memory 
with appropriate indices, except that now the representation of 
these encodings and the retrieval of the relevant objects may be 
done in the connectionist framework. 

Much of cognitive theory making will and should remain 
largely unaffected by connectionism. We have given two rea- 
sons for this. First, most of the work is in coming up with an 
information processing theory in the first place. Second, none of 
the connectionist arguments or empirical results have shown 
that the symbolic, algorithmic character of a significant part of 
high level thought, at least in the macro level, is either a 
mistaken hypothesis, purely epiphenomenal, or simply 
irrelevant. 
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is Smolensky’s treatment of connectionism 
on the level? 

Carol E. Cleland 
Department of Philosophy and Institute of Cognitive Science, University of 

Colorado, Boulder, Colo. 80309 

In his very interesting target article, Smolensky remarks that 
“most of the foundational issues surrounding the connectionist 
approach turn, in one way or another, on the level of analysis 
adopted” (sect. 1.3., para. 1). From a philosophical point of 
view, one of the main novelties of Smolensky’s PTC (proper 
treatment of connectionism) approach is the introduction of a 
new level for the analysis of cognition; in addition to the 
traditional conceptual and neural levels, there is the subconcep- 
tual level. Smolensky’s claim is that the complete formal account 
of cognition lies at this (the subconceptual) level. 

In exactly what sense is the subconceptual level supposed to 
be the more fundamental level for the analysis of cognition? 
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Smolensky explicitly likens the relationship between sym- 
bolic accounts of cognition (which adopt the conceptual level of 
analysis) and subsymbolic accounts of cognition (which adopt 
the subconceptual level of analysis) to the relationship between 
macrophysical accounts of physical phenomena and micro- 
physical accounts of physical phenomena, for example, the 
relationship of classical mechanics to quantum mechanics, the 
relationship of classical thermodynamics to statistical ther- 
modynamics (sect. 5, para. 11). The idea is that just as classical 
mechanics accurately describes the macrostructure of physical 
reality and quantum mechanics accurately describes the micro- 
structure of physical reality, so symbolic. models accurately 
describe the macrostructure of cognition and subsymbolic mod- 
els accurately describe the microstructure of cognition. He 
concludes that symbolic accounts are “reducible” to subsym- 
bolic accounts in the same sense that microphysics is “reduci- 
ble” to macrophysics. This, then, appears to be the sense in 
which the subconceptual level is supposed to be more funda- 
mental than the conceptual level: Just as rocks and chairs are 
nothing more than collections of elementary particles (elec- 
trons, neutrons, etc.) and the forces between them, so cognition 
is nothing more than the activities of individual processing units 
in connectionist networks. 

The problem is that the manner in which macrophysics is 
reducible to microphysics is not at all obvious. As traditionally 
construed, reducibility involves biconditional correlations 
(based on definition or law) between every reduced property 
and some reducing property. Unfortunately, despite the fact 
that many people are committed to the notion that microphysics 
is more fundamental than macrophysics, no one has been able to 
state any biconditional bridge laws which will actually effect the 
reduction of macrophysical properties to microphysical proper- 
ties. In the absence of such laws it is very hard to see how the 
claim that the microphysical is more fundamental than the 
macrophysical can be justified. Indeed this state of affairs has led 
some philosophers to conclude that microphysics is not the 
more fundamental science (Horgan 1982). In any case, it is not at 
all obvious that likening the relationship of the symbolic to the 
subsymbolic to the relationship of the macrophysical to the 
microphysical will shed much light on how the symbolic is 
supposedly reducible to the subsymbolic. 

Moreover, even supposing that the symbolic is reducible to 
the subsymbolic in the way that Smolensky suggests (that 
concepts literally are patterns over large numbers of subsym- 
bols), it wouldn’t automatically follow that the subconceptual is 
the correct level of explanation for cognitive phenomena. For, 
as Putnum (1980) has taught us, the correct level of explanation 
for a phenomenon is not always the same as the level of the basic 
entities which constitute the phenomenon. To use Putnum’s 
well-worn example, an explanation of the fact that a cubical peg 
(one-sixteenth of an inch less than one inch wide) passes through 
a square hole (one inch wide) and not a round hole (one inch in 
diameter) is not to be found in the laws of particle mechanics and 
electrodynamics even if it is in some sense deducible from these 
laws. Rather, an explanation of the fact in question is to be found 
in certain laws of classical mechanics and geometry, viz., the 
board (with the holes in it) and the peg are rigid, the square hole 
is bigger than the peg, and the round hole is smaller than the 
peg. That is to say, higher level structures sometimes come 
under laws that are, in effect, autonomous from the laws de- 
scribing their microstructure. This, of course, is exactly what 
Fodor (1975) and fellow travelers have in mind when they argue 
for the autonomy of the psychological (conceptual level). The 
upshot is that even supposing that the symbolic is reducible to 
the subsymbolic, the correct level for psychological explanation 
may not be at the level adopted by the subsymbolic paradigm 
(the subconceptual level). This in turn suggests that the subsym- 
bolic account of cognition may be quite compatible with the 
symbolic account of cognition. 

Smolensky denies this, however: He explicitly maintains the 
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incompatibility of the symbolic and subsymbolic accounts of 
cognition. This suggests that he has in mind a notion of reduc- 
tion which is much stronger than that reputed to hold between 
macrophysics and microphysics. For there must be a sense in 
which the higher conceptual level doesn’t matter — a sense in 
which cognition can be completely explained away in terms of 
patterns of activity over large numbers of subsymbolic entities. 
In short, the claim that the subconceptual level is more funda- 
mental than the conceptual level really amounts to the claim 
that there are no autonomous facts about cognition above the 
conceptual level. 

This brings us to the relationship of the subconceptual level to 
the neural level. According to Smolensky, the relationship of 
the subsymbolic to the neurophysiological is such that “the best 
subsymbolic models of a cognitive process should one day be 
shown to be some reasonable higher-level approximation to the 
neural system supporting that process” (sect. 4, para. 10). 
Despite the fact that he does not mention it, this makes the 
relationship between the subsymbolic and the neurophysi- 
ological sound as much like the reputed relationship of the 
macrophysical to the microphysical as does the relationship of 
the symbolic to the subsymbolic. In this case, however, subsym- 
bolic models must be taken as describing the macrostructure of 
(for lack of a better word) subcognition (vs. the microstructure of 
cognition) and neural models must be taken as describing the 
microstructure of subcognition. Nevertheless, when it comes to 
the analysis of facts at the subconceptual level, the subconcep- 
tual level is supposed to be the more fundamental level. That is, 
although the ultimate constituents of subconceptual structures 
are neural, the correct level for explaining subconceptual facts 
does not, according to Smolensky, lie at the neural level. This 
does not seem to be an unreasonable position to hold — no more 
so than Putnum’s claim that one cannot explain facts about 
square pegs and round holes in terms of microphysics, even 
though their ultimate constituents are microphysical. 

Smolensky has in mind a claim that is much stronger than the 
claim that the subconceptual level is the correct level for the 
analysis of subconceptual facts. He also believes that the sub- 
conceptual level is the correct level for the analysis of conceptual 
(psychological) facts. As I have urged, such a claim cannot be 
justified by appealing to the reducibility of macrophysics to 
microphysics. What Smolensky needs is a relationship of re- 
ducibility between the symbolic and the subsymbolic in which 
the conceptual is not autonomous from the subconceptual. One 
possibility would of course be to treat the symbolic as some sort 
of logical construction out of the subsymbolic, much the same 
way numbers are sometimes treated as logical constructions out 
of sets. In the absence of a clearer understanding of “units” and 
“weights” (the basic subsymbolic entities), I cannot imagine 
what such an account would look like. However I fear it would 
come up against all the difficulties which have traditionally 
afflicted attempts (such as those of the logical behaviorists) to 
ground identities for mental entities in logic and set theory. In 
any case, until an account of the exact nature of the “reduction” 
of the symbolic to the subsymbolic is at least adumbrated, it is 
very difficult to evaluate the promise of PTC for philosophy of 
mind and cognitive science. 

The psychological appeal of connectionism 

Denise Dellarosa 
Psychology Department, Yale University, New Haven, Conn. 06520 

The appeal of connectionism has its roots in an idea that will not 
die. It is an idea that was championed by Berkeley, Hume, 
William James, Ebbinghaus, and (in a different form) the entire 
behaviorist school of psychology. Put simply, this idea is that 
cognition is characterized by the probabilistic construction and 
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activation of connections (or associations) among units: ideas 
(Hume), habits (James), words (Ebbinghaus), or stimulus—re- 
sponse pairs (behaviorism). It is also an idea that is represented 
in Smolensky’s target article, albeit in distributed fashion. 

The British empiricists and early American psychologists took 
great care to describe the essence of cognition as the building of 
associations through experience: Events that co-occur in space 
or time become connected in the mind. Events that share 
meaning or physical similarity become associated in the mind. 
Activation of one unit activates others to which it is linked, the 
degree of activation depending on the strength of association. 
This approach held great intuitive appeal for investigators of the 
mind because it seemed to capture the flavor of cognitive 
behaviors: When thinking, reasoning, or musing, one thought 
reminds us of others. 

Historically, the crux of the issue has been whether these: 
associations can be formalized best as a chain of pattern—action 
pairs linked together through inference (e.g., GPS: Newell & 
Simon 1972; Logic Theorist: Newell et al. 1958), or as a network 
whose units can be activated in parallel (e.g., Pandemonium: 
Selfridge 1959; HEARSAY: Reddy et al. 1973). Although sym- 
bolic rule-based models have had great success, there is a sense 
in which psychologists have never been quite satisfied with 
them as models of cognition, often turning them into hybrid 
models that include spreading activation networks (e.g., ACT*). 
[See Anderson: “Methodologies for Studying Human Knowl- 
edge” BBS 10(3) 1987.] Practically, as Smolensky points out, 
these models tend to suffer from an unwanted “brittleness”: 
“best guesses” are difficult to achieve, and stimulus “noise” can 
bring operations to a grinding halt. Gone is the fluidity that 
flavors the human cognitive functioning observed in life and 
laboratory. 

This is not to say, however, that symbolic models of cognition 
are worthless or simply false. Indeed, Smolensky is, I believe, 
right on target when he states that connectionist models stand to 
symbolic ones as quantum mechanics stands to classical me- 
chanics. Just as the behavior of a physical system can be de- 
scribed using both classical and quantum terms, so too can the 
behavior of a cognitive system be described by both symbolic 
and connectionist models. In neither case, however, is the 

- lower-level description a mere expansion of the higher, nor can 
a one-to-one mapping of constructs between the two be made. 
Moreover, just as quantum theory changed our thinking about 
the nature of physical systems and their fundamental processes, 
so too, I believe, are connectionist models challenging and 
changing our ideas about the nature of fundamental cognitive 
mechanisms. The most telling example is the treatment of 
inference by the two frameworks. It is a belief of many cognitive 
scientists (most notably, Fodor 1975) that the fundamental 
process of cognition is inference, a process to which symbolic 
modelling is particularly well suited. While Smolensky points 
out that statistical inference replaces logical inference in con- 
nectionist systems, he too continues to place inference at the 
heart of all cognitive activity. I believe that something more 
fundamental is taking place. In most connectionist models, the 
fundamental process of cognition is not inference, but is instead 
the (dear to the hearts of psychologists) activation of associated 
units in a network. Inference “emerges” as a system-level 
interpretation of this microlevel activity, but - when represen- 
tations are distributed — no simple one-to-one mapping of 
activity patterns to symbols and inferences can be made. From 
this viewpoint, the fundamental process of cognition is the 
activation of associated units, and inference is a second-order 
process. 

Certain connectionist models also challenge our understand- 
ing of cognition by representing symbols not as static data 
structures, but as activation patterns that occur momentarily at 
run time. Such dynamic, distributed instantiations of symbols 
hold great promise for the much-hoped-for marriage of cog- 
nitive science to neuroscience. For, although Smolensky takes 

great pains to explain that connectionist networks, as they 
presently stand, do not represent neural networks, it is exactly 
this type of distributed representation scheme that may be 
needed to explain how, for example, the same groups of neurons 
can be used to store a variety of memories in the brain. 

Smolensky also discusses the ramifications of representing 
symbols in a distributed fashion in his reply to Pylyshyn (1984), 
suggesting that decontextualized symbols are a rarity — or 
impossibility — in connectionist models. This tends to give the 
knowledge encoded in connectionist networks a decidedly epi- 
sodic flavor, a characteristic with great psychological signifi- 
cance. Much has been made in the psychological literature of 
the semantic knowledge/episodic knowledge distinction, where 
semantic knowledge is knowledge that is free of one’s personal 
history. In reality, it is often difficult to uncover such decontex- 
tualized knowledge. Subjects’ retrieval of facts are often spon- 
taneously augmented by unbidden personal memories, such as 
when a fact was first learned, from whom it was learned, etc. 
Human knowledge seems to be cut from whole cloth, with fact 
and context inextricably interwoven. 

The proof, however, still remains in the performance of these 
models as predictors of human behavior. As in the case of 
quantum versus classical mechanics, connectionist models must 
demonstrate a greater degree of precision and accuracy in 
predicting and explaining the many nuances of human behavior 
than symbolic models currently do. Their success, should it 
come, will mean a reinstatement of associationism as the cor- 
nerstone of cognition. 

Some assumptions underlying Smolensky’s 
treatment of connectionism 

Eric Dietrich and Chris Fields 

State University, Las Cruces, N.Mex. 88003 

Smolensky deftly avoids, in his target article, the issue of the 
scientific merit of, and hence the scientific evidence for, his 
particular formulation of the connectionist strategy in cognitive 
science (sect. 1.2). He rather attempts to define connectionism 
in a way that clearly sets it apart from the traditional symbolic 
methodology, and in so doing to argue obliquely for its superi- 
ority as a research strategy. Smolensky advances, in other 
words, a position in the philosophy of science, and it is in this 
spirit that we will reply. 

The principle thesis of the target article is that connectionism 
— or at any rate Smolensky’s formulation of it — is revolutionary 
in the sense that it is incompatible in principle with the received 
view, that is, the symbolic methodology. We will show that 
Smolensky’s argument for this point, as presented in sections 2— 
5, rests on two implicit assumptions: the assumption that there 
is a “lowest” psychological level of analysis, and the assumption 
that different semantics, i.e., different interpretations of the 
behavior of a system, are in principle appropriate to different 
levels of analysis. It is of interest that Smolensky shares these 
assumptions with mentalists such as Fodor (1986) and Pylyshyn 
(1984), the very theorists he sees himself as opposing (sect. 1.3). 
We believe these assumptions to be false. Although we will not 
have space to argue in detail against them, we will illustrate 
briefly the effect of their rejection on the status and utility of the 
connectionist methodology. 

Let us first examine the overall argument of the paper, taking 
Smolensky completely literally on each of his points. The goal of 
Smolensky’s formulation of connectionism as stated in the Con- 
clusion is not to replace symbolic cognitive science, but rather to 
enrich cognitive science as a whole by explaining “the strengths 
and weaknesses of existing symbolic theory . . . how symbolic 
computation can emerge out of nonsymbolic computation,” and 
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so forth. Smolensky’s goal, to use his analogy (sect. 5; also 
Smolensky 1987a), is to create a microtheory of cognition that 
stands to macroscopic cognitive science as quantum mechanics 
stands to classical mechanics. Based on this analogy, one might 
expect Smolensky to propose a microtheory, the explanations of 
which grade smoothly into those of the macrotheory as a set of 
parameters approach specified limits. Instead, Smolensky ar- 
gues at length that the micro- and macrotheories are in this case 
inconsistent (sect. 2.4), and indeed, he phrases the argument in 
a way that suggests that he believes the scientific utility of 
connectionism to hinge on its being inconsistent with the sym- 
bolic approach (hence his impatience with “bland ecumeni- 
calism”). 

The notion that one theory can explain the strengths and 
weaknesses of another theory with which it is flatly inconsistent 
is perplexing, to say the least. The way around the paradox, 
clearly enough, is to view the theories as advancing alternative 
interpretations of the system’s behavior to satisfy different 
explanatory requirements — in the case of physics, classical 
mechanics explains billiard balls, while quantum mechanics 
explains electrons. The interfaces are then handled by defining 
approximations. This is what Smolensky does in practice (sect. 
5), but it is straightforwardly ecumenical. Smolensky’s attempt 
to advance this (quite reasonable) view of the relationship 
between the symbolic and subsymbolic approaches while simul- 
taneously affirming their inconsistency in principle lends his 
paper a certain dramatic tension, but hardly increases its 
coherence. 

Smolensky’s insistence that the symbolic and subsymbolic 
approaches are inconsistent can be traced, we believe, to his 
assumptions about the role of semantics in psychological expla- 
nation. Before proceeding with this, however, it is worth mak- 
ing fully explicit a point that Smolensky touches on, but does not 
elaborate. The philosophical debate about connectionism is not, 
contrary to common opinion, a debate about architecture; it is 
only a debate about semantics, that is, about the interpretation 
of the behavior of an architecture. This point can be seen clearly 
by viewing the connectionist architecture in the state-space 
representation defined by Smolensky’s claim (8a). The states in 
this space are vectors specifying possible values of the excita- 
tions of the nodes in the system; this space is continuous, but can 
be approximated arbitrarily well by a discrete space (sect. 8.1). 
Paths in this state space correspond to episodes of execution 
from given inputs, and can be viewed as searches in the usual 
way. 

Viewed in this representation, computations on a connec- 

tionist machine have the same architectural features as com- 
putations on a von Neumann machine; they amount to serial 
searches in a space of possible solutions. In particular, a deter- 
ministic connection machine is just as behaviorally rigid, and 
hence just as brittle, as a deterministic von Neumann machine. 
This equivalence is preserved if the machines in question are 
stochastic (Fields & Dietrich 1987). As Smolensky notes, some- 
what obliquely, in sect. 2.4, what connectionism has to offer 
architecturally is no more, but also no less, than an alternative 
methodology for building AI systems. 

Smolensky’s revolution can therefore only be supported by 
demonstrating a principled incompatibility between the in- 
terpretations of the behavior of the architecture advanced by his 
version of connectionism on the cne hand, and by the symbolic 
paradigm on the other. The entire weight of Smolensky’s case, 
therefore, must rest on claims (8b) and (8c), which together 
amount to the claim that such a principled incompatibility of 
interpretations exists. Claim (8b) is simply asserted; Smolensky 
then argues that, if (8b) is true, it will typically be impractical to 
calculate the interactions between patterns of activity in- 
terpretable at the conceptual level precisely. The consequence 
of this argument is then reformulated from a claim about com- 
putational resources to a principle in (8c). This move deserves 
some skepticism: Given a mapping from activation patterns to 
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concepts, and a precise specification of the underlying dynam- 
ics, one could calculate a precise specification — or at least an 
arbitrarily good approximation (e.g. to within 10-16 seconds) — 
of the behavior of the system at the level of concepts if one were 
willing to take the time to do so. Smolensky grants us a precise 
specification of the underlying dynamics; indeed this is, one 
suspects, what makes connectionism dear to him. He must 
therefore implicitly deny that any fixed mapping from activity 
patterns to concepts is possible, in principle. 
Two questions arise very naturally at this point. First, how 

can Smolensky rule out the simple stipulation, in the spirit of 
denotational semantics, of a fixed interpretation mapping ac- 
tivity patterns to concepts? Humans, after all, interpret human 
behavior conceptually with great facility, and there is every 
reason to believe that they do not do so by calculating approxi- 
mate concept-level descriptions from the underlying dynamics. 
What is to prevent theorists from doing the same? Second, if 
there is something to the claim that concept-level descriptions 
are fuzzy in principle, what prevents us from using the same 
argument to show that subsymbolic descriptions are only fuzzy 
approximations of neural descriptions, or that neural descrip- 
tions are only fuzzy approximations of biochemical descriptions, 
and so forth? The answers to these questions reveal Smolensky’s 
implicit assumptions, which he appears to share with his arch- 
rivals Fodor and Pylyshyn. 

Let us consider the second question first. Smolensky argues 
(sect. 4) that connectionists need not be too concerned with 
neural realism because we do not currently know enough about 
the brain to construct neurally realistic models. We must admit 
finding this claim somewhat mystifying in light of the success of 
neurally minded groups such as Grossberg’s in formulating 
candidate models of interesting cognitive processes (e.g., 
Grossberg 1980, 1987; Grossberg & Mingolla 1985; Grossberg 
& Stone 1986). Be that as it may, however, it is surely an error to 
argue from impatience over a lack of data to a principled 
distinction between levels of description. Smolensky must, in 
addition, implicitly believe that there is no psychological de- 
scription of events at the neural level for subsymbolic descrip- 
tions to be fuzzy approximations of. In other words, if the 
subsymbolic level of description is the lowest level that admits a 
psychological interpretation, then we can stipulate that descrip- 
tions at this level are precise, and we need not worry that they 
may turn out to be mere fuzzy approximations of lower-level 
descriptions. 

A consideration of the first question posed above reveals a 
second assumption. Smolensky cannot block the claim that the 
behavior of a physical system can be interpreted, by stipulation, 
at any level of description that its interpreters prefer. The 
model-theoretic notion of interpretation is, after all, the very 
cornerstone of the theory of virtual machines on which the 
practice of emulative programming rests. He must assume, 
therefore, that some interpretations are in principle appropriate 
to the chosen level of description, whereas others are not. Claim 
(8b) is an example of such an assumption; in addition to (8b), 
Smolensky must assume that the rough and ready conceptual 
interpretations that humans impose both on themselves and on 
each other in everyday life are inappropriate as high-level 
descriptions of connectionist systems that are precise relative to 
the operative explanatory goals. Apparently for Smolensky, the 
appropriateness of a description is determined not by explanato- 
ry goals, but by metaphysics. 

“Thoroughly modern mentalists” such as Fodor and Pylyshyn 
make precisely these assumptions, although with the concep- 
tual level taken to be the “preferred” level of analysis (e.g., 
Pylyshyn 1984; Fodor 1986). Smolensky simply transfers this 
preferential treatment down one level of description, while 
maintaining the same mentalist, or we shudder to say, dualist 
metaphysics. 

If these assumptions are rejected, one is left with an ec- 
umenical, but in our opinion far from bland theory. It runs like 
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this: Humans are complex information-processing systems. 
They can be interpreted as such at any level of description. A 
description of a human as a dynamical system at any level can be 
used to calculate a description at any higher level; if one is 
willing to commit the necessary resources, this description can 
be made arbitrarily precise relative to the lower-level descrip- 
tion. The precision required is determined by explanatory 
goals. The only restrictions on the semantics of the interpreta- 
tions used to describe the system are those imposed by intra- 
level coherence, and by the explanatory goals with which the 
interpretation is constructed. One can, if one wants, interpret 
neurons as representing grandmothers; if this interpretation 
does not prove to be useful, it can always be revised. 
We wish to claim no credit whatsoever for this view. It was 

formulated over 30 years ago by Ross Ashby (1952), and it 
appears to us to provide, with relatively minor technical embel- 
lishments, a quite adequate foundation for computational psy- 
chology and cognitive science. In particular, it shows us clearly 
how connectionism, viewed not as a revolution, but as a valuable 
addition to our methodological tools, can achieve the goals 
Smolensky sets out in his Conclusion. 

On the proper treatment of Smolensky 

Hubert L. Dreyfus@ and Stuart E. Dreyfus> 
“Department of Philosophy, University of California, Berkeley, Calif. 94720 
and ©Department of industrial Engineering and Operations Research, 
University of Califomia, Berkeley, Calif. 94720 

Connectionism can be understood as the most serious challenge 
to representationalism to have emerged on the cognitive science 
scene. In view of the intellectual rigor of Smolensky’s contribu- 
tion to connectionism we hoped his target article would present 
a powerful formulation of this eliminitivist challenge. On first 
reading, however, we were shocked by what seemed to be an 
attempt to defend a two-level representationalist account of 
connectionism. At one level — call it the macrolevel — Smol- 
ensky seemed to be saying that whenever a net is processing 
information the representational symbols of conventional cog- 
nitive science are instantiated by patterns of activities of units. 
His disagreement with cognitive science is simply that the 
generation of intelligent behavior could not be exhaustively 
explained by formal operations on these “conceptual” symbols. 
Moreover, Smolensky seemed to hold that on a second, deeper 
microlevel, one could carry out the conventional cognitive 
science program by explaining intelligent behavior using finer- 
grained (subconceptual) symbols which picked out context-free 
microfeatures of the task domain. 

That this was not only our interpretation was brought home to 
us when we found that Fodor & Pylyshyn (1988) quote this very 
target article as clearly placing Smolensky and the connec- 
tionists in the representationalist camp. Fodor & Pylyshyn use 
Smolensky’s statement that “Entities that are typically repre- 
sented in the symbolic paradigm by symbols are typically 
represented in the subsymbolic paradigm by a large number of 
subsymbols” (sect. 1.3., para. 5) as evidence that Smolensky is 
committed to what we have called macrorepresentationalism. 
To support their understanding that Smolensky is a representa- 
tionalist at the microlevel Fodor & Pylyshyn quote Smolensky’s 
connectionist hypothesis that, “Complete, formal and precise 
descriptions of the intuitive processor are generally tractable 
not at the conceptual level, but only at the subconceptual level” 
(8c). Fodor & Pylyshyn conclude that “the resultant account 
would be very close to the sort of language of thought theory 
suggested in early proposals by Katz and Fodor.” 
On second reading we think that we (and Fodor & Pylyshyn) 

have misunderstood Smolensky on both these points. There is a 
plausible way of construing both statements, and others like 

them, in the context of the whole target article which makes 
clear that Smolensky’s version of connectionism is not commit- 
ted to representationalism on either the macro- or the micro- 
level. 

On the macrolevel, the sentence quoted by Fodor & 
Pylyshyn does seem to endorse the cognitivist hypothesis that 
all intelligent behavior can be analyzed as the sequential trans- 
formation of symbols which represent context-free features of 
the object domain — precisely those features we can normally 
notice and name. However, in the course of Smolensky’s paper 
the same idea is progressively refined until it is clear that the 
claim is not that all intelligent behavior involves symbol trans- 
formation, but rather that only a very limited form of behavior — 
the deliberate behavior typical of the novice consciously apply- 
ing rules — involves symbols. Hypothesis 8b restates the same 
principle but explicitly refers to “the semantics of conscious 
concepts of the task domain” (our emphasis). And in section 6. 1, 
paragraph 1, Smolensky reinterprets 8b in a completely unam- 
biguous way stating that “concepts that are consciously accessi- 
ble correspond to patterns over large numbers of units” (our 
emphasis). 

On the microlevel, Smolensky certainly seems to be a repre- 
sentationalist when he says in his abstract: “The numerical 
variables in the system correspond semantically to fine-grained 
features below the level of the concepts consciously used to 
describe the task domain.” And the final statement of hypothesis 
8 might well suggest, and indeed did suggest to Fodor & 
Pylyshyn, that the precise logical formalism they favor, although 
it is missing on the macrolevel, which presupposes a language of 
thought using features of the sort named in everyday language, 
can be found on the microlevel in a language of thought that uses 
subsymbols, standing for microfeatures that we are not normally 
able to perceive and articulate. 

Once one realizes, however, that what Smolensky means by a 
complete, formal, and precise description is not the logical 
manipulation of context-free primitives — symbols that refer to 
features of the domain regardless of the context in which those 
features appear — but rather the mathematical description of an 
evolving dynamic system, it is far from obvious that the fine- 
grained features Smolensky calls subsymbols are the elements 
of a language of thought. Sentences such as “Hidden units 
support internal representations of elements of the problem 
domain, and networks that train their hidden units are in effect 
learning subconceptual representations of the domain” (sect. 3, 
para. 5) certainly leave open the possibility that there neces- 
sarily exist context-free subsymbols representing features of any 
problem domain, and that units or patterns of units detect them. 
But later in the paper Smolensky forecloses this interpretation 
by stating explicitly that “the activities of the subconceptual 
units that comprise the symbol — its subsymbols — change across 
contexts” (sect. 7.2., para. 6). 

If the idea of a unit having a semantics but not corresponding 
to acontext-free feature of the task domain seems contradictory, 
consider the following. Given a net with hidden units and given 
a particular activity level of a particular hidden unit, one can 
identify every input vector which produces that activity level of 
that hidden unit. The activity level of the unit can then be 
semantically interpreted as representing the set of these input 
vectors. That unit at that activity level is a subsymbol in a very 
weak sense. For, while such a subsymbol can be correctly 
interpreted as representing a microfeature of the domain, the 
microfeature need not be a context-free microfeature. (To sym- 
bolize a context-free microfeature the unit would need to take 
on its given activity level independently of one or more of the 
elements of the input vector. Roughly put, if the input vector is 
the state of the world, then a context-free feature is that portion 
of the input vector which determines the activity of the hidden 
unit independent of the rest of the input vector). Given this 
weaker version of semantic interpretation, there is no necessary 
connection between claiming that hidden units are semantically 
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interpretable, as Smolensky holds, and claiming that they pick 
out context-free invariant features of the domain, which is the 
implicit commitment of the representationalism characteristic 
of cognitive science. Thus connectionists can hold the minimal 
representationalist position of Smolensky and still eliminate the 
sort of conceptual and subconceptual symbols defended by 
cognitivists such as Fodor & Pylyshyn. 

The promise and problems of connectionism 

Michae! G. Dyer 
Computer Science Department, University of California at Los Angeles, Los 
Angeles, Calif. 90024 

I am attracted by PDP (parallel distributed processing) models 
because of their potential in tolerating noise, generalizing over 
novel inputs, exhibiting rule-like behavior without explicit 
rules, performing pattern completion and decision-making 
through massively parallel constraint satisfaction, and so on. 
Connectionism promises to supply an alternative foundation for 
cognitive science (in place of the symbolic, linguistic, logical 
foundations) and to unite it, for the first time, with the physical 
and biological sciences through statistical and continuous 
models. 

The use of weight matrices does allow widely varying inputs 
to be mapped into a set of invariant categories in the output. 
Unfortunately, what gives these systems their robustness also 
makes it very difficult to capture abstractions and symbolic 
operations and has led to attacks on the claims made for specific 
PDP models (e.g., Pinker & Prince 1988). 

Although the discovery of automatic learning devices may 
appear to supply a philospher’s stone to cognitive science, such 
devices must still be programmed (by specifying the initial 
connections of the network and the nature and order of the input 
during the learning phase). Although it might be theoretically 
possible to submit enormous quantities of carefully organized 
input data to one gigantic, homogeneous “connectoplasm” and 
after 20 years to get out a college-educated neural network, this 
would be impractical, to say the least. Even if it were successful 
we wouldn't understand scientifically what we had produced. 
Consequently, we must also pursue top-down approaches. 
Higher-level tasks must be specified and used to direct the 
construction of PDP architectures capable of handling those 
tasks, which invariably require symbol-like operations. Consid- 
er reference resolution during comprehension and rebuttal 
during argumentation: 

(1) Pronoun reference. To read the text <John walked into a 
restaurant and the waiter, Bill, walked up. After he ordered he 
brought him the food.> symbolic NLP (Natural Language 
Processing) systems first instantiate a restaurant schema and 
bind John to the patron role. Within the schema is a representa- 
tion for the patron receiving the food from the waiter. Since 
John is already bound to the patron role, upon binding “him” as 
the recipient of the food, the system can infer immediately that 
John (rather than Bill) is receiving the food. This fundamental 
kind of role-binding (Dolan & Dyer 1987) is very difficult to 
accomplish in a reasonable way in PDP models. 

(2) Rebuttal. If one goes up to a Finnish friend and states: “All 
Finns are terrible at music,” the chances are good that he will 
reply: “What about Sibelius?” Consider for a moment what 
must be going on here. [See also BBS multiple book review of 
Sperber & Wilson’s Relevance, BBS 10(4) 1987. ] First, the Finn 
must understand the initial utterance and realize that it is not a 
fact but an opinion or belief. He must then decide whether or 
not he agrees with it. If he has a negation of it already in 
memory, then he need only recall it. However, it is uot likely 
that someone has even expressed this thought to him in the past, 
so a negation has to be generated on the fly. He needs to use an 
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argument strategy (Alvardo et al. 1986) of the sort: <if x claims 
that all y from class C have property P, then search in memory 
for a y’ from C with not-P>. Finally, the proper associative 
retrieval has to be performed and the recalled counterexamples 
have to be evaluated before actually being generated as a 
rebuttal. The above task is complex, involves a number of steps, 
and cannot be modeled with only simple associational tech- 
niques (which, solely based on the input, would first tend to 
retrieve all Finns who are terrible musicians). 
When association lists were first implemented in Lisp (as P- 

lists), researchers argued that all forms of knowledge could be 
represented in terms of such associations. But P-lists (frames, 
etc.) are only tools. They do not tell us how to construct any 
particular theory of cognitive processing. The invention of Lisp 
greatly advanced the technological base for pursuing symbolic 
AI. Now researchers are realizing that all forms of associations 
can be represented as adaptive weight matrices. The discovery 
of the generality and usefulness of adaptive weight matrices may 
advance the technological base for modeling one kind of learn- 
ing just as greatly. But, like other tools, adaptive weight ma- 
trices do not supply us directly with solutions to complex 
processing problems in cognitive modeling. 

Symbolic operations should not be implemented to perform 
exactly as in symbolic models. If they were, PDP models would 
lose many of their interesting properties. But without mecha- 
nisms to perform analogous symbolic functions, PDP models 
will never advance beyond the signal processing stage. Without 
something analogous to bindings, it is impossible to form larger 
knowledge structures. 

Currently, schema-like knowledge is modeled in PDP sys- 
tems in terms of patterns of activation over PDP units, usually 
composed of “microfeatures” (Rumelhart & McClelland 1986). 
This approach poses a number of problems for anyone who 
wants to represent and manipulate schema-like structures for 
comprehension, question answering, argumentation, and so on. 

These problems include: 
(1) Knowledge portability: In a symbolic system, any pro- 

cedure that knows the syntax of the symbolic formalism can 
execute or interpret a symbol’s semantic content. Symbol struc- 
tures thus serve as an interlingua for internal processes. In 
contrast, since PDP models form their own patterns of activity 
through learning, the activity pattern learned by one network 
will generally be undecipherable to another. As a result, it is 
very difficult to port knowledge from one area of memory to 
another. Most current PDP models are designed to perform a 
single task; the same network cannot be used for multiple tasks. 

(2) Microfeature selection: In many PDP models, gradient 
descent learning leaves a set of microfeatures “clamped down” 
or fixed. In such cases, the knowledge representation problem 
of AI is simply pushed back to an equally hard problem of 
determining what the microfeatures must be. One way to 
eliminate microfeatures is to extend gradient descent learning 
techniques into the representation of the input itself. In one 
experiment, our model (Miikkulainen & Dyer 1987) learned 
distributed representations of words while at the same time 
performing McClelland and Kawamoto’s (1986) case-role assign- 
ment task. As a result, microfeatures were never needed; word 
meanings were formed distributively during the performance of 
the task, and the resulting model did a better job at generalizing 
to novel inputs in the case-role assignment task. 

(3) Training set reuse: In most PDP models there is no 
distinction between rapidly changing knowledge and knowl- 
edge more impervious to change. The weight matrices are 
formed by repeated interaction with a training set (TS). Since 
the same network stores all associations, the teacher must 
resubmit the original TS to the system when novel inputs are 
learned; otherwise the system will not respond correctly to the 
old inputs (due to interference). In contrast, humans can often 
form categories based on a very small number of inputs (Pazzani 
& Dyer 1987). It is unrealistic to assume that TS data are stored 



Commentary/Smolensky: Proper treatment of connectionism 

verbatim somewhere in the brain, simply to reestablish a weight 
matrix. Clearly, knowledge must be consolidated at some point 
and memories must be organized so that new information can be 
rapidly acquired while interfering minimally with consolidated 
memories. i 

PDP models have caused great excitement, especially in 
signal processing areas (where adaptive networks allow complex 
data to be mapped to a fixed set of categories). If PDP models are 
to go beyond adaptive signal processing, however, analogs for 
= and symbol processing (Touretzky 1987) will have to be 
ound. 

Dynamic systems and the ‘“subsymbolic 
level’ 

Walter J. Freeman 
Department of Physiology-Anatomy, University of California, Berkeley, Calif. 
94720 

I find it easy to agree with the premises that Smolensky sets 
forth in defining and defending the subconceptual hypothesis, 
and with many of the conclusions that he draws. In particular, 
the observations by my students and myself on the functions of 
the brains of small mammals trained to perform cognitive tasks 
appropriate to their stations in the phylogenetic tree have amply 
shown that (8a) the dynamics of intuitive processors and their 
changes with learning are governed by ordinary differential 
equations (ODEs), that (8b) concepts are complex patterns of 
activity over many units, and that (8c) formal, precise and 
complete descriptions are not “tractable” at the conceptual 
level, but only at the subconceptual level. 

But my agreement is predicated on his agreement with me 
that formal, complete, and precise descriptions refer to the 
ODEs by which a model is formulated, whether in software or 
hardware, and not to the soluiions of the equations, which with 
any reasonable degree of model complexity are endlessly un- 
folding, evolving, and delightfully (or painfully) full of surprises. 
Given the structures of the ODEs that suffice to replicate EEG 
waves and the requisite complete parameter values, we are no 
more able to predict in detail the output of the model than that of 
the modeled brain (Skarda & Freeman 1987). Will he agree with 
me that the solutions may constitute concepts, exemplified by 
odors (meaningful events for an animal) as distinct from odorants 
(laboratory chemicals used as conditioned stimuli)? This is 
providing that the solutions conform to stable attractors repre- 
senting convergence to reproducible spatiotemporal patterns of 
neural or simulated activity (Baird 1986; Freeman & Skarda 
1985). 

With a similar reservation I agree that the subconceptual is 
above the neural level. By this I mean that information which 
relates to or subserves goal-directed animal behavior exists at 
the macroscopic level of cooperative activity of masses of neu- 
rons; it is not observable in the unaveraged behavior of single 
neurons (Freeman 1975; Freeman & Skarda 1985; Skarda & 
Freeman 1987). Most of the physiological results that claim 
otherwise have been derived from paralyzed or anesthetized 
animals, or they have resulted from stimulus-locked time en- 
semble averaging, which retrieves the 2% of variance related to 
the stimulus and flushes the 98% of the background noise that 
arises from the attractors in the brain. I also agree that the 
proper time base for solving descriptive ODEs is continuous, 
but with the understanding that in software simulation a dis- 
crete time step is needed, small enough to be nonintrusive; this 
is feasible. But in hardware simulation too the array must be 
small enough (e.g., up to 100) so that one need not resort to time 
multiplexing; with any reasonable size of fully connected array 
(e.g., 1,000 to 10,000 elements), continuous time is not feasible. 
This is because without multiplexing the number of connections 

increases with the square of the number of elements, N, but 
with multiplexing it increases as 2N (Freeman, in press). 

I presume that Smolensky shares my aversion to partial 
differential equations, perhaps for the same reasons, that they 
are infinitely dimensional and less tractable than integro- 
differential equations. The nervous system also appears to avoid 
them at the level of concept formation by recourse to spatial 
discretization with columns and glomeruli. I suppose that by 
“quasilinear” equation Smolensky means the Ist or 2nd order 
ODE cascaded into a sigmoid nonlinearity or its functional 
approximation. This element for integration is by now virtually 
standard in connectionism. 

I agree most enthusiastically with his complaint that al- 
together too great a proportion of our understanding of real 
brains is structural rather than functional. By the same token I 
complain that connectionists likewise ignore dynamics too read- 
ily; those who do pay attention tend to rely altogether too greatly 
on equilibrium attractors for their dynamics and neglect the 
attractors of limit cycles and chaos. The reasons for both in- 
stances of neglect appear to be the same: Things are too 
complicated. 

Smolensky’s Table 1 should, in my opinion, have all pluses; 
this can be done with some minor redefinition of terms. 

l infer, from his reliance on nonlinear ODEs, that Smolensky 
agrees that solution sets for a complex network typically incor- 
porate multiple stable domains. The behavior of such a system is 
most often marked by sudden jumps or bifurcations from one 
domain to another, depending on one or another bifurcation 
parameter, which are the phase transitions (sect. 9.5., para. 1.) 
that he writes about. Although the local time scale may be 
continuous, the global time scale must be discrete. This is the 
essence of the strings of bursts that we see in EEGs and the 
strings of concepts that we infer the bursts carry (Skarda & 
Freeman 1987), which are parts of the “slowly shifting harmony 
landscapes” in his language. 

Smolensky asks questions of doubtful value concerning the 
semantics of subsymbolic systems, namely, “which activity 
patterns actually correspond to particular concepts, or elements 
of the problem domain?” Animals, of course, have no proper 
linguistic abilities, and we have as yet no appropriate data from 
man. Correspondence is a matter of behavioral correlation in 
neurophysiological research. We have made extensive use of 
the third class of methodologies that Smolensky exemplifies by 
“multidimensional scaling.” The first two are laden with difficul- 
ties that we believe are insoluble. The implicit notion that any 
positivistic relationship exists between “words,” “images,” and 
“neural activity patterns” should have died with phrenology but 
regrettably has not. 

Moreover, the idea of representation carries with it notions of 
registration, storage, retrieval, comparison, cross-correlation, 
and figure completion. The PDP (parallel distributed process- 
ing) operations of backward propagation, error correction, and 
heteroassociative learning are also predicated on this digital- 
computer-metaphor for memory. Our physiological evidence 
shows that such storage, retrieval, comparison, etc., do not exist 
in the olfactory system, and we have predicted that they will be 
found not to exist elsewhere in biological brains. We know that 
information is incorporated into the dynamics and the structure 
of brains from the outside world, but we do not know, nor need 
we know, what is being represented on which TV screen to 
which homunculus in the brains of rabbits, or, for that matter, of 
our spouses. The idea is unnecessary in understanding brains 
and the devices that simulate them. Fodor and Pylyshyn (1987) 
are, I believe, right in stating that if connectionism relies on 
representation it is dead. Its liveliness stems from its indepen- 
dence of that cognitivist assumption. 

I much prefer Smolensky’s “harmony maxima” to his “ver- 
idical representations.” The latter term has the ring about it of 
“truth tables,” which exist in the world as teeth and fire but not 
in the brain; what evidence can he put forth that any one of them 
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is true? But the former has the ring of poetry, which Turing 
machines cannot do or even translate, and which lends itself to 
the images of strange attractors and the genesis of chaos, the 
grist and gristle of dynamical systems. 

Connectionism and the study of language 

R. Freidin 
Department of Philosophy, Princeton University, Princeton, N.J. 08544 

The application of computers to the problem of understanding 
natural language has, from the outset, been marked with great 
optimism and also great naivete (Dresher & Hornstein 1976). 
This seems to be no less true for current connectionist: ap- 
proaches to language — though it is perhaps a bit early in the 
game to see what connectionist models can do in the area of 
natural language. (See, however, Pinker & Prince 1987 for a 
detailed critique of Rummelhart & McClelland’s 1986 proposal 
regarding the past tenses of English verbs.) What characterizes 
these AI approaches to natural language is a certain lack of 
understanding about the complexity of the object of inquiry and 
the difficulty of the problem. For example, Smolensky states in 
sect. 6, para. 4 that “the competence to represent and process 
linguistic structures in a native language is a competence of the 
human intuitive processor, so the subsymbolic paradigm as- 
sumes that this competence can be modeled in a subconceptual 
connectionist dynamical system.” By competence Smolensky 
means ability, I assume. He is therefore proposing a connec- 
tionist model of linguistic performance (not to be confused with 
linguistic competence — Chomsky’s technical term for a speak- 
er's knowledge of language). There is no reason to believe that 
such a model will succeed. 

The most difficult problem a model of language use must 
address is what is called the creative aspect of language use — the 
fact that normal language use is innovative, potentially un- 
bounded in scope, and free from the control of detectable 
stimuli. As Chomsky notes in Language and Mind (1972), the 
latter two properties could be accommodated within mechanical 
explanation. He continues: 

And Cartesian discussion of the limits of mechanical explanation 
therefore took note of a third property of the normal use of language, 
namely its coherence and its “appropriateness to the situation” — 

which of course is an entirely different matter from control by external 
stimuli. Just what “appropriateness” and “coherence” may consist in 
we cannot say in any clear or definite way, but there is no doubt that 
these are meaningful concepts. We can distinguish normal use of 
language from the ravings of a maniac or the output ofa computer with 
a random element. 

Honesty forces us to admit that we are as far today as Descartes was 
three centuries ago from understanding just what enables a human to 

speak in a way that is innovative, free from stimulus control, and also 
appropriate and coherent. This is a serious problem that the psychol- 
ogist and biologist must ultimately face and that cannot be talked out 
of existence by invoking “habit” or “conditioning” or “natural selec- 
tion.” (pp. 12-13) 

Or “subconceptual connectionist dynamical system,” it would 
appear. 

The underlying assumption of connectionist approaches to 
cognitive modeling seems to be that we now have a line on the 
right architecture for cognition (i.e., the “connection machine” 
hardware) as well as the appropriate mechanism for learning 
(the software for running the machine successfully in cognitive 
domains). Presumably if we feed the connection machine the 
appropriate data, the machine will produce the correct cog- 
nitive model. The machine then functions as a discovery pro- 
cedure for cognitive models in various domains. Thus in the 
domain of language we might expect that on presentation of data 
the machine will produce a grammar of the language. 
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The failure of discovery procedures for grammars is well 
known in linguistics. It seems highly unlikely that this situation 
will change with the introduction of some powerful computer 
architecture coupled with general inductive learning strategies 
of the sort discussed in the connectionist literature. What 
linguistic research into the structure of language has shown over 
the past thirty years is that a cognitive model of language 
involves several abstract concepts specific to the language fac- 
ulty. This model has strong empirical support crosslinguistically 
(for details, see Chomsky 1984; Freidin 1987). There is no 
reason to believe that these abstract concepts will emerge from 
the kind of statistical analysis of data available in connectionist 
networks — either symbolic or subsymbolic. 

In fact, there is good reason to believe just the opposite. Many 
of the abstract concepts of linguistic theory are embedded in the 
formulation of general grammatical principles which distinguish 
ungrammatical sentences from grammatical sentences. Consid- 
er, for example, the well-formedness conditions on the occur- 
rence of bound anaphors (e.g., reflexive pronouns and re- 
ciprocals — each other in English). In current versions of gener- 
ative grammar, there is a general condition called Principle A of 
the Binding Theory that prohibits anaphors that are antecedent- 
free in the domain of a syntactic subject (details aside). The 
effect of this principle is to mark sentences such as (1) as 
ungrammatical in contrast to grammatical sentences as in (2). 

(1) *Mary, believes [, Bill to like herself,] 
(2) a. Mary, believes [ herself; to like Bill] 

b. Mary, likes herself, 
The salient point here is that principles of grammar like Princi- 
ple A are formulated on the basis of what structures are ill- 
formed — that is, in terms of ungrammatical examples which are 
not part of the normal linguistic environment. Thus the con- 
cepts involved in such principles, not to mention the actual 
formulation of the principles themselves, are motivated in terms 
of the “poverty of the stimulus” — that is, the lack of relevant 
information in the environment of the language learner (see 
Chomsky 1980 for discussion). The problem for any model of 
language acquisition based solely on input from the linguistic 
environment is that there is no way to distinguish ungram- 
matical sentences, e.g. (1), from novel grammatical sentences. 
Why should a language learner who has heard the sentences in 
(2) judge (1) to be ungrammatical rather than just a novel 
grammatical sentence? The answer (according to generative 
grammar) is that principles like Principle A are part of the innate 
cognitive structure a child brings to the task of language 
acquisition. 

For such principles (or their effects) to be derived from 
connectionist networks constructed solely from the Statistical 
analysis of data, the ungrammatical versus novel grammatical 
sentence problem must be solved. It is difficult to see how this is 
to be done without incorporating some version of the innateness 
hypothesis in linguistics. Furthermore, caution seems advisable 
when interpreting the effects of connectionist networks. For 
example, Hanson and Kegl (1987) discuss a connectionist net- 
work PARSNIP “that learns natural language grammar from ex- 
posure to natural language sentences” (from the title of the 
paper). On the evidence they present, the claim is false. 
“PARSNIP correctly reproduces test sentences reflecting one 
level deep center-embedded patterns (e.g., [[the boy [the dog 
bit]] yelled] which it has never seen before while failing to 
reproduce multiply center-embedded patterns (e.g., [[the boy 
[the dog [the cat scratched]bit]] yelled]).” However, the phrase 
structure rules for English do not make distinctions between 
multiple center-embedding and single center-embedding — or 
for that matter, between center-embedding and noncenter- 
embedding. The unacceptability of multiply center-embedded 
constructions does not follow from grammar at all — see Miller 
and Chomsky (1963) for the original discussion. Thus, whatever 
the PARSNIP network represents, it is obviously not a grammar in 
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the usual sense. At this point is it still far from clear what 
relevance connectionist models are going to have to cognitive 
models of language. 

Statistical rationality 

Richard M. Golden 
Department of Psychology, University of Pittsburgh, Pittsburgh, Pa. 15260 

Because Smolensky’s subsymbolic hypothesis requires a more 
rigorous formulation, his arguments are not convincing. In his 
commentary, a revised form of Smolensky’s subsymbolic hy- 
pothesis is proposed based upon analyses of the relationships 
between logical inference, statistical inference, and connec- 
tionist systems. The compatibility of the symbolic and subsym- 
bolic paradigms is then reconsidered using the revised subsym- 
bolic hypothesis. 
Problems with the terminology of Smolensky’s subsymbolic 

hypothesis. Smolensky’s subconceptual-level hypothesis (8c) is 
completely dependent upon distinguishing the “conceptual” 
and “subconceptual” levels of description, yet he is unable to 
characterize even the nature of the representation at the sub- 
conceptual level. The term “complete, formal, and precise 
description” in (8c) is also problematic. I believe that Smol- 
ensky’s intention here is to describe the computational goals of a 
connectionist model with respect to his statistical “best fit 
principle.” (sect. 9.1.) If this is the case, however, this intention 
should be explicitly stated within the subsymbolic hypothesis. 
Logical inference is a special case of statistical inference. One 

serious limitation of Boolean algebra or symbolic logic is that 
propositions are either true or false. That is, symbolic logic is 
incapable of precisely representing partial belief in a proposi- 
tion. Also note that the traditional rule-governed approach in 
cognitive science is based upon deciding whether propositions 
are either true or false: A proposition cannot be both “almost” 
true and “almost not” false. A number of statisticians (e.g., Cox 
1946; Jeffreys 1983; Savage 1971) have proved that the only and 
most general calculus of partial belief whose conclusions are 
always guaranteed to be consistent with symbolic logic is proba- 
bility theory. 

Cox’s (1946) approach is particularly elegant. Let a and B be 
propositions and let B (a|B) be a belief function whose value is 
one (true) if the truth of B implies the truth ofa, and whose value 
is zero (false) otherwise. Thus, when the range of the belief 
function, B, is binary and discrete, B represents a rule. The 
problem now is to extend the range of the function B so that it is 
continuous and is permitted to range between zero and one 
inclusively. Cox (1946) has provided a simple formal argument 
showing that if B always assigns real numbers to pairs of proposi- 
tions such that the laws of symbolic logic are never violated, the 
function B(a|B) must be the conditional probability of a given 
that B is true. 
Rational connectionist models are statistical inference mecha- 

nisms. Although Smolensky has proposed the “best fit princi- 
ple” as a desired property of connectionist systems, this princi- 
ple has only been formally demonstrated for a small class of 
connectionist systems such as the Harmony theory neural net- 
works of Smolensky (1986a) or the Boltzmann machine neural 
networks of Hinton and Sejnowski (1986). Other researchers 
(e.g., Hummel & Zucker 1983; Rumelhart, Smolensky, Mc- 
Clelland, & Hinton 1986) have viewed their networks as con- 
straint satisfaction networks or nonlinear (usually quadratic) 
optimization algorithms (see e.g., Luenberger 1984) that are 
minimizing/ maximizing some cost function. From the perspec- 
tive of demonstrating rational information processing, such 
constraint satisfaction analyses are inadequate since the in- 
ference process has not been shown to be either logical or 
statistical in nature. 

One solution to the problem of demonstrating rational infor- 
mation processing is to use the cost function that a neural 
network is minimizing/ maximizing during information retrieval 
to construct a probability function that the network is maximiz- 
ing during information retrieval (Golden, submitted). More- 
over, it can be shown using an extension of arguments by 
Smolensky (1986a) that such a construction is unique (Golden, 
submitted). If such a probability function exists, then the neural 
network can be viewed as a statistical pattern recognition al- 
gorithm that is computing the most probable value of the 
information to be retrieved. Such algorithms are known as MAP 
(maximum a posteriori) estimation algorithms in the engineer- 
ing literature. This type of computational theory provides for- 
mal justification for the “statistical rationality” of many popular 
deterministic connectionist models such as Anderson’s BSB 
model (Anderson et al. 1977), Hopfield’s (1984) model, and the 
back-propagation neural network models (Rumelhart, Hinton & 
Williams 1986). In addition, questions concerning what classes 
of probabilistic environments a given connectionist model is 
capable of learning and the extent to which a given connectionist 
model's learning algorithm is optimal can be addressed. 

Continuity is necessary for representing partial (real-valued) 
beliefs. As noted above, statistical inference differs from logical 
inference in its ability to represent and manipulate “partial 
beliefs” in propositions. Logical inference can only approx- 
imately model statistical inference, but statistical inference can 
yield exactly the same answers as logical inference. Accordingly, 
the following revised version of Smolensky’s subsymbolic hy- 
pothesis is suggested: 

A revised subsymbolic hypothesis. The intuitive processor is a 
connectionist dynamical system that is designed to solve statistical 
pattern recognition problems. 
This revised subsymbolic hypothesis demonstrates more di- 

rectly the incompatibility of the subsymbolic and symbolic 
paradigms as described by Smolensky in the target article. The 
reason why Smolensky’s hypothesis (10) must be rejected is 
that, according to this revised hypothesis, the intuitive pro- 
cessor is representing and manipulating “partial beliefs” (i.e., 
belief functions whose range is continuous and not discrete) 
which cannot be done by a rule-governed processor. Note that 
the role of continuity in the connectionist paradigm was also 
stressed in Smolensky’s target articie (sect. 8.1.). 

Conclusion. In summary, Smolensky’s original subsymbolic 
hypothesis is too dependent on a charactcrizatiox of the elusive 
“subconceptual” level of symbolic processing, anc should in- 
stead stress the role of statistical inference in <onnectionist 
systems. The “continuous” aspect of statistical ‘aformation pro- 
cessing relative to discrete logical information processing can 
then be used to prove the incompatibility of the symbolic and 
subsymbolic paradigms. 
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Common sense and conceptual halos 

Douglas R. Hofstadter 
Psychology and Cognitive Science, University of Michigan, Ann Arbor, 
Mich. 48104 

Paul Smolensky’s target article is an excellent clarification of the 
position of the connectionist movement in cognitive science. 

Since I agree with all its major points, I would like to take the 
opportunity to cast these issues in a somewhat different light. I 
believe that understanding and explaining the elusive nature of 
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common sense will become central concerns of cognitive sci- 
ence, if they are not so already. I will therefore attempt to draw 
some links between connectionism and common sense. 

In his one allusion to common sense (sect. 2.3, hypothesis 5b), 
Smolensky writes: “The process of articulating expert knowl- 
edge in rules seems impractical for many important domains 
(e.g., common sense) ’; this s.ems to suggest that common sense 
is a domain. I strongly believe such a suggestion should be 
marked “to be rejected.” 
“Common sense” is a term used frequently in discussions of 

what’s wrong with artificial intelligence, yet is seldom if ever 
defined. I have heard it suggested that if an AI system absorbed 
vast amounts of knowledge (e.g., the Encyclopaedia Britan- 
nica), it would possess common sense. I believe this is totally 
wrong. An idiot savant who could recite the entire Encyclo- 
paedia Britannica by memory would almost surely possess less 
common sense than ordinary people. I believe common sense is 
an automatic, emergent byproduct of a certain type of cognitive 
architecture, and that connectionist architectures — even in 
simple stripped-down domains - are much more likely to 
exhibit common sense than are the fanciest traditional symbolic 
architectures, whether in knowledge-intensive or in stripped- 
down domains. I think it is important to clarify what is meant by 
“common sense” and to strip it of its mythical dimensions. 

For purposes of clarification, therefore, let us consider a 
scenario that clearly calls for commonsense thinking. Suppose 
you have invited a close friend for dinner, and she doesn’t show 
up. From past experience, you know her to be very reliable. As 
the hour grows later and later, what do you do? There are all 
sorts of possibilities, including these fairly obvious and sensible 
ones: phone her home; go over to her place, if it’s not too far; 
guess her most likely route to your place, and trace that route; 
phone the police; start eating dinner yourself. 

As time passes and you become increasingly concerned, 
various less obvious but still fairly reasonable steps will come to 
mind, perhaps including the following: check your own calendar 
to make sure you didn’t get the day wrong; phone your friend's 
neighbors, friends, or relatives, for ideas or clues; phone or go to 
her favorite haunts and see if she’s at any of them; go back to her 
place and leave a note on her door; scour her yard and perhaps 
try to get into her house; phone the local hospital; phone her 
employer at home. 

Once these thoughts are exhausted, you begin to get desper- 
ate, and therefore some far-out possibilities start coming to 
mind, such as: start wondering if you actually did invite her to 
dinner, after all; write her an angry letter and tell her she’s no 
longer your friend; call up somebody else to take her place; ask a 
radio station to broadcast an announcement asking her to con- 
tact you; hire a psychic or fortune-teller to help locate her. 

Although it would be impossible to draw an exact boundary 
line, there is a point at which the ideas that come to mind verge 
on the irrational. In fact, the following are ideas that would occur 
to a rational person only as humorous thoughts lightening up the 
serious mood, if they occurred at all. These avenues are exceed- 
ingly unrealistic and some of them would require genuine 
creative intellectual effort to come up with: take a plateful of 
your dinner and leave it on your friend’s porch; engage a pilot to 
sky-write a note asking her to contact you; turn on the ballgame 
on TV and scour the bleachers to see if she might have gone 
there; call the New York Public Library reference desk for help; 
write to Miss Manners for advice. 

This thought experiment conjures up an image of a “sphere of 
possibilities” centered on the given situation, where distance 
from the center indicates, very crudely, the degree of im- 
plausibility involved. Another way to conceive of distance from 
the center is in terms of “tension” or “stress,” in the sense that 
one feels an increasing degree of mental discomfort with the 
suggestions in outer layers. As desperation mounts, however, a 
kind of “mental temperature” rises, reducing one’s reluctance 
to sample regions of this sphere far from its center. This type of 
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mental temperature can be taken as a measure of tolerance of 
tension. 

Let us refer to this sphere of possibilities as the commonsense 
halo surrounding the mental representation of the situation in 
question (here, that your friend has not shown up). How do 
human beings access elements of such a commonsense halo in a 
plausible order? 

One conceivable way of exploring such a halo would be to 
generate all the possible ideas (of which there are a limitless 
number, of course) and then to rank them in terms of ease of 
execution, likelihood of success, an? so on, somewhat as a game- 
playing program looks ahead in a full-width move tree. Clearly 
this is nothing like what people do. People effortlessly generate 
closer-in, more commonsensical ideas without having to edit 
them from a host of further-out ideas. 

A more psychologically plausible method for generating a 
commonsense halo would be based on heuristics. In such a 
method, each situation would address an appropriate set of 
heuristics that, given a temperature, would suggest elements of 
the halo that have the appropriate degree of wildness. The 
problem with this is that situations are unique, and conse- 
quently the addressing mechanisms would have to be extremely 
sophisticated. 

I believe the most psychologically realistic model for the 
generation of elements of the commonsense halo is based on 
the idea that each and every concept in the mind is itself 
surrounded by a halo of neighboring concepts. Such a concep- 
tual halo — elsewhere called an “implicit counterfactual 
sphere” (Hofstadter 1985) — is very much like the common- 
sense halo described above, except that rather than surround- 
ing a complex situation, it surrounds simply one concept, such 
as the notion of contacting someone, or that of “home.” Near 
the core of the conceptual halo around “contact” are such 
concepts as “phone,” “go see,” and “write.” Further out might 
be “dream about,” “communicate psychically,” and so on. 
These far-out relatives are accessible only at high 
temperatures. 

I would like to make it clear that such a conceptual halo is 
distributed and has no precise boundaries. I conceive of it as an 
inevitable, epiphenomenal outcome of “mental topology” — a 
vision of concepts as intrinsically distributed, overlapping re- 
gions in an abstract space (Hofstadter 1979, pp. 652-56; 
Hofstadter 1984). (One can of course conceive of concepts in a 
more brain-related way — for instance, as distributed, overlap- 
ping groups of neurons — but that is not necessary for a mental 
topology to exist.) According to this view, some concepts are 
very near each other (overlap a great deal), others are vaguely 
related (overlap slightly), while yet others are widely separated 
(have no overlap). This is hardly novel — it is merely a way of 
saying that the mind is associatively structured. Therefore, 
when concepts are properly represented in a model (i.e., as 
overlapping regions in an abstract space), conceptual halos will 
automatically be present; no extra apparatus will have to be 
added to the model. 

The mental representation of a situation (such as a friend not 
turning up for dinner) is a compound structure involving a 
number of simultaneously activated constituent concepts, and 
the commonsense halo around that situation is, accordingly, an 
automatic consequence of the existence of conceptual halos 
around all the activated concepts. In order to construct ele- 
ments of the commonsense halo, it suffices to probe the various 
conceptual halos involved, one at a time or several in parallel, 
adjusting the mental temperature as needed. The degree of 
tension or implausibility attached to a particular element of the 
commonsense halo is a function of the distances from the cores of 
the various conceptual halos probed, and thus, indirectly, of the 
mental temperature. Note the complete lack of heuristics 
needed, in this model, to account for common sense. 

I would certainly not claim to have captured the full complex- 
ity of common sense in this sketch, but the imagery is intended 
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to show the intimate relation between common sense and a 
connectionistic (or at least associationistic) architecture of men- 
tality. Closely related to my claim about common sense and 
subsymbolic architectures is the further claim that, as re- 
searchers attempt to develop increasingly accurate models of 
such other critical features of ordinary human mentality as 
memory retrieval, analogy-making, error-making, and 
creativity, symbolic architectures will reveal themselves to be 
increasingly brittle (Holland 1986), while subsymbolic architec- 
tures will prove to be increasingly supple (Hofstadter 1979, pp. 
570-71). Of course, such issues will not be resolved definitively 
for a long time. In the meantime, philosophical treatises of 
clarification such as Smolensky’s will serve the vital purpose of 
affording researchers a perspective from the forest level, rather 
than from the subforest level. 

Some memory, but no mind 

Lawrence E. Hunter 

Computer Science Department, Yale University, New Haven, Conn. 06520 

The connectionists have surely done something, but no one 
seems to be certain quite what. Smolensky claims there is a high 
probability that they will explain all of cognitive science and 
provide a uniform “theory from which the multiplicity of con- 
ceptual theories can all be seen to emerge.” Although connec- 
tionism has undoubtedly made a contribution to cognitive sci- 
ence, this claim seems untenable. 

The first problems with Smolensky’s claims arise in the overly 
broad definition of “connectionism.” The original usage (Feld- 
man & Ballard 1982) is more restricted than Smolensky’s; there 
are earlier network models (cf. Grossberg 1976) that meet the 
broad definition. Smolensky’s claims are perhaps best taken to 
refer to feedforward networks trained using either simulated 
annealing or back propagation of error. 

These networks and training methods contribute to cognitive 
science a design for content-addressable memory. First pro- 
posed in Luria 1966 (see also Kohonen 1984), a content-ad- 
dressable memory is one in which the address of a piece of 
stored information can be determined (by the memory store 
itself) from a retrieval pattern that is similar to the stored 
pattern. Such a system is crucial to most theories of cognition. 
Although connectionist models thus far lack some features 
desirable in a content-addressable memory,! they have advan- 
tages over discrimination networks (Feigenbaum 1963) and 
other serial models. 

There are, however, competing theories of content-addressa- 
ble memory (e.g., Hopfield 1982), and connectionist models’ 
performance is substantially worse than state of the art in other 
domains (e.g., natural language processing [McClelland & Ka- 
wamoto 1988] or expert problem solving [Touretzky & Hinton 
1985]). Furthermore, several of Smolensky’s general claims 
seem incorrect. 

First, cognitive science other than connectionism is not en- 
tirely “constructed of entities which are symbols,” and should 
not be called the “symbolic paradigm.” Some theories in cog- 
nitive science do depend necessarily on symbolic manipulation 
(e.g., variable binding, a touchstone of symbolic processing?). 
Nevertheless, much of the analysis of cognitive science applies 
equally well to connectionist and nonconnectionist systems. For 
example, Smolensky’s discussion of semantics and rationality 
has nothing whatever to do with whether the system involved 
uses symbols or connections; furthermore, it was arrived at 
more than half a century ago by Tolman. According to action 
theory (Tolman 1932), organisms strive to map goals to actions, 
which produce feedback (relative to the goals) that guides 
change in future mappings. Tolman claimed that one ap- 
proaches knowledge of the true state of the world through 

repeated episodes of such goal pursuit with feedback. Smol- 
ensky’s “subsymbolic semantics hypothesis” is a restatement of 
this theory, and I do not see how the validity of the claim 
depends on representations of the environment being internally 
coded as connections. 

Smolensky labels nonconnectionist cognitive science as 
“competence” theory, calling to mind Chomsky’s move to 
insulate his theory of language from its incorrect predictions 
about behavior (Chomsky 1980). Smolensky’s label suggests, 
without substantiation, that traditional cognitive theories like- 
wise make incorrect predictions. Perhaps he means that connec- 
tionism will be able to make predictions regarding phenomena 
about which symbolic models must be neutral. This may be the 
case, although there are also behavioral phenomena about 
which connectionism must be silent, for example, the effect of 
synaptic chemistry on reaction time. Theories of cognition are 
measured by their breadth and predictiveness; Smolensky did 
not demonstrate that connectionist theories will be broader or 
more predictive than more (or less) abstract characterizations. 

Second, connectionism is significantly incomplete as a theory 
of learning. I arning, loosely stated, is the improvement of an 
organism’s abi. ity to achieve its goals on the basis of its experi- 
ence. Clamping the input and output of the system to a desired 
state is not what is traditionally meant by experience. Even 
simple, slow learning is more than just forming associations: It 
also requires deciding how much to attend to which potential 
stimuli, characterizing stimuli in an appropriate way, and eval- 
uating the relationship between the stimuli and active goals 
(Schank et al. 1986). In addition, not all learning is simple or 
slow: for example, learning from single experiences (DeJong 
1983), learning to seize opportunities (Birnbaum 1986), and 
generating novel explanations (Kass 1986). Content-addressable 
memories are probably necessary, but certainly not sufficient, 
to perform these kinds of learning tasks. Simulated annealing 
and back propagation are programming techniques for generat- 
ing content-addressable memories; they are not models of 
learning. 

Related to the mistaken idea that connectionist systems are 
models of learning is the claim that “solving the assignment of 
blame problem is one of the central accomplishments” of con- 
nectionism. Smolensky’s note 9 belies this claim by explaining 
that current connectionist systems assign blame by undirected 
search through the space of possible assignments (tested by 
repeating the training examples tens of thousands of times). This 
technique is neither new nor satisfactory. More important, it 
assigns blame for error in finding the best match in memory, not 
for identifying which states of the world or actions of the system 
led to some goal outcome. 

Finally, there is a difference between a theory of a content- 
addressable memory and a theory of what to put in it. Connec- 
tionism provides a theory of how information is stored in memo- 
ry, but not what information should be stored. Much valuable 
research has been done into techniques for selecting which 
objects, relationships, and characterizations should be com- 
puted and then stored in order to best further goal pursuit (e.g., 
Schank & Abelson 1977; Schank 1982; Hammond 1986). These 
are (in part) theories of what to represent. No connectionist 
training algorithm has created a network that can relate long 
sequences of sensations and actions to complex goals nearly as 
well as existing theories. 

Despite vociferous claims like Smolensky’s, connectionism’s 
contribution has been modest. Content-addressable memory is 
important, as is the enthusiasm it has whipped up for the field of 
cognitive science. Connectionism is not a framework for a 
general theory of cognition, nor for learning, nor even for 
representation. 

NOTES 
1. For example, Baron’s description of human associative memory 

(Baron 1987) includes a “goodness of match” measure for each input, 
and the ability to recall both the best match and associations to it. 
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2. Despite Smolensky’s assertion, using essentially the same seman- 
tics as English words is not such a touchstone (cf. Schank & Abelson 
1977). 

On the obvious treatment of connectionism 

Stephen José Hanson 
Bell Communications Research, Morristown, N.J. 07960; Cognitive Science 
Laboratory, Princeton University, Princeton, N.J. 08544 

1. The claim. It hardly seems controversial that connectionist 
models can be formally interpreted as doing statistical inference 
and minimizing differential equations. The controversial aspect 
of Smolensky’s target article concerns the way he wishes to 
characterize these familiar, numerically relevant mathematical 
systems. His claims seem to be motivated by what might be 
called the “strong implementational view of connectionism.” 

If a symbolist theory of, say, phonology exists, then showing 
that it can be represented in a connectionist system provides no 
new information about phonology or about what the theory of 
phonology should look like. Connectionist modelers must look 
at the theory of phonology and use insights from that theory to 
develop their connectionist model. It becomes merely an imple- 
mentational account. 

Given the strong implementational view, it would seem 
critical to be able to show that connectionist models have some 
special properties that give them new computational abilities 
and representational semantics that do not or in principle 
cannot appear in symbolist accounts. What is needed, according 
to Smolensky, is the subconceptual level — with subsymbols and 
subthoughts and subbehavior and subcognition — which repre- 
sents the proper level of analysis for the study of the mind and 
cognition. Smolensky argues that these “subthings” are some- 
where between things and neurons; consequently, they are 
neither things nor neurons but can be made to approximate 
things and neurons. 

Let me try to list some of the presuppositions of this charac- 
terization of connectionist models and to provide an alternative 
account of what connectionist models gain from distributed 
representation and why connectionist models are not merely 
implementational. 

2. Symbolist theories aren't complete, nor are they correct. One 
presupposition of Smolensky’s approach seems to be that sym- 
bolist (rule-based) accounts of psychological phenomena are 
correct, complete, consistent, and served up on a silver platter. 
I daresay it would not be hard to find lots of counterexamples to 
this assumption. 

A second tacit assumption of this strong implementational 
view seems to be that theory development is not affected by the 
medium and axioms of the model used to implement the ideas. 
Although verbal theories are not that easy to come by, it is just as 
hard to express theories in a detailed formal system, perhaps 
harder. Much of the original intent of the theory and goals may 
be lost in a particular formalization. 

It is clear, however, that the constituents and structure of the 
model can help or perhaps impede theory development; the 
theory and the modeling environment interact to make the parts 
of the theory vulnerable and to bring out relations among 
variables that the theory may only hint at or not refer to at all. 
Connectionist models may provide just the sort of constituent 
structure that many symbolist theories badly need. 

3. Differential equations and symbols can get along. Do we 
really need a new language and terminology for standard mathe- 
matical systems and their effects? Differential equations have 
had a long history in the natural sciences and they of course 
differ from recursive rule systems; probability models likewise 
differ from boolean models in their form of expression. What 
becomes difficult to reconcile is (1) the technical jargon that 
arises within the mathematical system and (2) folk descriptions 
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Figure 1 (Hanson). The four possible kinds of representa- 
tional relations between tokens and types. On the left are two 
kinds of hidden-layer localist representations. On the right are 
two kinds of distributed representation. 

of the phenomena, which are approximate, inaccurate, and 
intuitive. Connectionist jargon has already begun to include 
intuitive notions of optimal points, local minima, gradient 
search, and general optimization notions. This language will 
probably evolve naturally with the mathematical theory of 
networks and their relation to the phenomena they model. At 
this juncture the notion of “subthings” may obscure rather than 
clarify the distinctions between symbolic and connectionistic 
modeling. 

4. Subsymbols or features? Let me be precise about a simpler 
alternative to Smolensky’s PTC (proper treatment of connec- 
tionism); let me call it OTC (the obvious treatment of connec- 
tionism). In Figure 1, I have displayed the possible kinds of 
network configurations as a function of input or output unit 
representation and the hidden unit representation adopted 
through learning (local or distributed). The first case shown in 
Figure 1 is what we might associate with the usual symbolic or 
rule-based approach; it is of course quite “localist” (i.e., a single 
unit constitutes a single symbol). Here the tokens “dogl,” 
“dog2,” and “dog3” are being mapped to the “dog” concept. 
This type of process is the assignment of a set of tokens to a type. 
It is up to other operations to associate the tokens with other 
tokens or featural representations of the same type as in, for 
example, an inheritance process. 

The second case shown is still a kind of symbolist representa- 
tion as well as a case of local representation. In this case, 
however, tokens are first decomposed into a set of primitive 
features or composite types which cover all the possible tokens 
in the domain. So in the present case, “barks,” “has fur,” 
“breathes,” and “has spots” are examples of a set of features that 
might be used to describe dogs and other animals. Schank’s 
(1975) Conceptual Dependency approach is an example, with 
the tokens in the domain first mapped onto a set of general types 
or features (P-TRANS, a physical transfer of information). Other 
operations such as planning or problem solving would involve 
the manipulation of this sort of general feature information. 

The third case is the first simple instance of a distributed 
representation. The hidden layer is representing the tokens as a 
set of types or features that would cover all the possible tokens in 
the domain. In fact, exactly the same kinds of features could be 
used as in the second localist case just mentioned. The only 
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difference between this distributed representation and the 
localist representation is that the feature decomposition is a 
function of the weight connections which encode the relations 
between the tokens “dogl” (etc.) and the feature values in the 
hidden layer representing the “dog” concept, “barks” and so on. 

The fourth and last case is completely distributed between 
the input representation and the hidden layer. In this case there 
exists a featural representation in both the input layer and the 
hidden layer. It would be most useful to have specific features 
with specific tokens (dogl is composed of “fido,” “barks,” 
“floppy ears,” etc.) and to allow these to be recombined in the 
hidden layer in order to “construct” the dog concept. We might 
also allow new features to be constructed or to emerge from a 
“decomposition” of our originally chosen features. So in the 
hidden layer “dog” tokens would tend to activate “bark,” 
“breaths,” “wags tail” and perhaps co-occurrences (or n-tuples) 
of general features, “barks and wags tail.” In this case we would 
not have to indicate which hidden unit belonged to which 
feature in the input layer. These hidden-unit feature-bindings 
could be discovered during learning. 

At this point one might wonder what is so remarkable about 
distributed representation. The four cases we have discussed 
are not really antithetical to symbolist approaches, nor do they 
provide any exceptional new view on representation that sym- 
bolists haven't already thoroughly considered. Featural repre- 
sentations are not new or very difficult to characterize; they date 
back to Aristotle. 

What then distinguishes the connectionist representations 
from any other kind? We begin to see a bit of it in case 3 where 
tokens are being mapped to featural representations. The dif- 
ference between this case and case 2, where featural representa- 
tions are chosen a priori for the domain and its tokens, is that the 
representation between the token and its features is made 
visible. It is now obvious from the connection strengths what 
token “dogl” is made up of, plus the representations that 
determine its composition are readily accessible, visible, and 
shared! among all other tokens in the domain. This visibility or 
accessibility of the network representation is what distinguishes 
it from the localist/symbolist representations in which such 
information has been committed to the representation lan- 
guage. This difference is one of the reasons why learning is 
possible and so natural for connectionist networks. In contrast, 
symbolic approaches must somehow make clear to the learning 
operations they use what aspects of the representation were 
responsible for some event; and worse, they must track down 
the “hidden” information initially assumed or even axiomatized 
in the representational language and make it visible to those 
same learning operations. 

This focus on learning now makes it crucial to understand the 
intentional feature and mapping operations once they have been 
learned. In some sense the representation problem has been 
turned on its head. Instead of asking what the proper feature 
representation is for a cup or a chair, connectionists want to 
know under what conditions the proper featural representation 
would be learned for cups or chairs. 

NOTE 
1. This leads to the problem of how to extend the feature “lexicon” of 

the network. This too is not new. Any representational scheme that uses 
features must encounter this constraint at some time or another. 

Smolensky, semantics, and the sensorimotor 
system 

George Lakoff 
endian t a 

California, Berkeley, Calif. 94720 

I admire Smolensky’s attempt to characterize the relationship 
between connectionist research and more traditional issues in 

cognitive science. My comments are of two sorts: some clarifica- 
tions where I think Smolensky might have said things a little 
better, and some important areas that he did not treat, but 
which are consistent with his overall approach. 
Some clarifications. In mentioning the “conceptual level”, 

Smolensky does not mean to return to the symbol-manipulation 
paradigm. His “conceptual level” is not a kind of logical form 
(say, of the old generative semantics variety) nor a Fodorian 
“language of thought.” Smolensky’s “conceptual level,” as I 
understand it, would have to conform to the mathematics of 
dynamical systems, and not to the mathematics of recursive 
function theory and model theory. I will say more below on how 
that might be done. 

A possible misunderstanding may arise from Smolensky’s use 
of the word “level.” This word is used in the academic world in 
at least two senses. In linguistics, levels are taken to be distinct 
representations of different kinds, with correspondences be- 
tween elements across levels. For example, many linguists 
speak of the phonetic level, the syntactic level, and the semantic 
level, with the assumption that these are three different kinds of 
representations. This is not what Smolensky has in mind. 
Instead, he has in mind something more like the physicists’ 
notion of level, as in the subatomic level, the atomic level, the 
molecular level, and so on. 

Thus, Smolensky’s three levels are not three different kinds of 
things. There is the neural network of the physical brain: This is 
the neural level. There is the aspect of the physical brain 
(namely, the neural structure and activity) that connectionism 
picks out to model: This is the subconceptual level. And there is 
a structure to the activation patterns of that aspect of the brain’s 
neural network that connectionism models: This is the concep- 
tual level. Both the subconceptual and conceptual levels are 
aspects of the neural networks of the physical brain and their 
activity. 

I assume that this is what Smolensky has in mind, and will 
proceed from here. 
Semantics and the sensorimotor system. Smolensky’s discus- 

sion makes what I consider a huge omission: the body. The 
neural networks in the brain do not exist in isolation; they are 
connected to the sensorimotor system. For example, the neu- 
rons in a topographic map of the retina are not just firing in 
isolation for the hell of it. They are firing in response to retinal 
input, which is in turn dependent on what is in front of one’s 
eyes. An activation pattern in the topographic map of the retina 
is therefore not merely a meaningless mathematical object in 
some dynamical system; it is meaningful. A different activation 
pattern over those neurons would mean something different. 
One cannot just arbitrarily assign meaning to activation patterns 
over neural networks that are connected to the sensorimotor 
system. The nature of the hookup to the body will make such an 
activation pattern meaningful and play a role in fixing its 
meaning. 
Compare this, for example, with a string of symbols in a 

Fodorian language of thought, or in a computer program. The 
symbols are not meaningful in themselves. They have to be 
“given meaning” by being associated with things in the world. If 
the symbols are to stand for categories, those symbols must be 
given meanings by being associated with categories that are out 
there in the world. In my recent book (Lakoff 1987) I survey a 
wide range of evidence showing that such a project is impossi- 
ble, that the symbolic paradigm cannot have a viable theory of 
meaning. 

Interestingly enough, in the evidence I survey there is not 
evidence against a connectionist account of meaning. The rea- 
son is that activation patterns over neurons can be meaningful in 
themselves when the neurons are appropriately located relative 
to the sensorimotor system. Such activation patterns do not 
have to be “given meaning” the way that strings of symbols do. 

The point of all this is that, counter to what critics like Fodor, 
Pylyshyn, Pinker, and Prince have said, it is connectionism, not 
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the symbolic paradigm, that is the only game in town. And it is 
the connection to the body that makes connectionism a player in 
the semantics game. 

invariance and cognitive semantics. Connectionist semantics 
is, of course, not highly developed at present to say the least. 
But all that could change in a short time. The reason is that 
cognitive semantics, as it is being developed within linguistics, 
meshes well with connectionism. 

The basic mechanisms of cognitive semantics include cog- 
nitive topology, mental spaces, metaphor, and metonymy. 
Technically, cognitive semantics is consistent with the connec- 
tionist paradigm but not with the symbol-manipulation para- 
digm. One reason is that cognitive topology, which provides for 
the basic mechanisms of reasoning, is continuous rather than 
discrete. 

At present there is a gap between connectionism and cog- 
nitive semantics: We do not know how cognitive topology can be 
implemented in connectionist networks. Such an implementa- 
tion should be possible. The key, I believe, is what I have been 
calling the “invariance hypothesis.” The idea is this: Each of the 
elementary structures of cognitive topology — bounded regions, 
paths, contact-versus-noncontact, center-versus-periphery, 

etc. — have to be preserved in mappings from one modality to 
another in order for sensorimotor control to be successful. It is 
hypothesized that activation patterns corresponding to such 
structures arise in the development of sensorimotor control, and 
are mapped onto structures! of abstract reason by the connec- 
tionist mechanism for characterizing metaphor: mappings from 
one neural ensemble to another across a narrow channel. The 
structures studied in cognitive topology are called “image sche- 
mas’ (or sometimes merely “images”). The best places to read 
about them are in Lakoff, 1987, case study 2 and in Langacker, 
1987. 

Conclusion. In applying connectionism to issues in cognitive 
science, it is important not to think of it as just another mode of 
information processing, in parallel instead of in sequence. In a 
full-blown connectionist theory of mind, activation patterns 
over neurons are meaningful in themselves by virtue of what 
those neurons are connected to. The intractable problem of 
assigning meanings to symbols does not arise here. 

It is also important to remember that the isolated models 
connectionists build to study the properties of networks are not 
full-blown connectionist theories of mind. They vastly over- 
simplify, or totally ignore, sensorimotor input and output, 
assuming that, for the purpose of the study at hand, one can just 
as well use feature names, to which the model-builders must 
assign meanings. This is a crucial difference between isolated 
models and a full-blown theory. 

There is another important difference. What neural networks 
can do is constrained in the full-blown theory by the nature of 
the sensorimotor system. For example, consider what connec- 
tionist phonology in the full-blown theory would be like. Pho- 
nological processes, in large measure, would be characterized 
by conventionalized activation patterns controlling articulatory 
and acoustic processing. This would help to limit the general 
principles embodied in phonological patterns to those that are 
phonetically realistic. In symbol-manipulation phonology (that 
is, generative phonology), no such restrictions are automatically 
built into the theory. However, since such sensorimotor con- 
straints are not built into the isolated models, those models do 
not embody the constraints of the full-blown theory. Thus, 
where the full-blown theory can offer phonetic explanations for 
constraints on phonology, the isolated models cannot. 

For such reasons, it is vital to bear in mind that a full-blown 
connectionist theory of mind is a lot more than just an informa- 
tion-processing system. 

NOTE 
1. For example, idealized cognitive models, grammatical construc- 

tions, image-schemas, etc. (see Lakoff 1987 for details). 
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Physics, cognition, and connectionism: An 
interdisciplinary alchemy 

Wendy G. Lehnert 
Department of Computer and Information Science, University of 

Massachusetts, Amherst, Mass. 01003 

As the symbolic/subsymbolic debate rages on I've noticed many 
of my colleagues in the so-called mainstream symbolic AI 
community backing off from public debates on the matter. In 
AI, one normally doesn’t talk about anything for more than two 
years unless the idea is generating about a dozen Ph.D. theses. 
But that’s just one part of the story. In truth, a lot of us have first- 
hand experience with graceless degradation and we understand 
very well about the desirability of soft constraints: My seman- 
tically oriented colleagues in natural language have understood 
about such things ever since the early days of preference 
semantics (Wilks 1978). Even so, the desirability of soft con- 
straints does not negate the validity of the symbolic paradigm. 
Although Smolensky does not advocate that we abandon sym- 
bolic information processing, there is nevertheless something 
facile about his conciliatory conclusion depicting one big happy 
family where everyone can peacefully coexist. 

The first thing I noticed about connectionism was how the 
psychologists picked up on it long before the AI community got 
interested. Initially this seemed puzzling to me, but then it 
made perfect sense. The interdisciplinary appeal of connec- 
tionism is not so much a computational appeal, as it is an appeal 
based on theorem envy. We must also understand that the 
problem of theorem envy has always been stronger in psychol- 
ogy than it ever was in AI. This is undoubtedly because graduate 
students in computer science who harbor a strong desire to be 
mathematicians have the option of becoming theorists in com- 
puter science. In graduate psychology programs, there seems to 
be no analogous safety valve for those seeking rigor in their lives. 
Or at least there wasn’t until the early 80s. 

In recent years connectionism has come to the rescue of a new 
generation of psychologists who are really closet mathemati- 
cians and physicists. Unfortunately, there is one aspect of 
theorem envy which is a serious threat to the health of cognitive 
science: methodology-driven research at the expense of prob- 
lem-driven research. 

Here is where I find connectionism potentially dangerous: 
Most connectionists are methodology-driven. The ccnnec- 
tionists who claim to be doing neural modelling are clearly 
methodology-driven (see, for example, Churchland 1986). Even 
the researchers who distance themselves from neural modelling 
are methodology-driven in slightly more subtle ways. Smol- 
ensky is a good example of this. A central thesis of his target 
article places subsymbolic processing above the neural level, so 
Smolensky’s view of connectionism does not derive from neu- 
rophysiology. Rather, Smolensky hopes to wed the natural 
sciences to cognition by deriving the cognitive principles under- 
lying subconceptual processing from physics. He takes a narrow 
view of dynamical systems as the proper foundation for subsym- 
bolic processing, and then attempts to distinguish dynamical 
systems that are cognitive from dynamical systems that are 
purely physical. This is a methodology-driven argument which 
positions the methodologies of physics at the center of Smol- 
ensky’s view of connectionism. However powerful these trap- 
pings are for those who feel reassured by equations, a fondness 
for physics and its associated mathematics has narrowed Smol- 
ensky’s view of connectionism, cognition, and computation in 
general. 
We see Smolensky-the-physicist at work in the “connec- 

tionist dynamical system hypothesis” which describes an intu- 
itive processor in terms of differential equations. Not content to 
stop there, he proposes a definition for cognitive systems which 
implies that the only difference between a cognitive person and 
a noncognitive thermostat is a matter of degree (pardon the 
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pun). Putting aside the problem of defining cognition on a 
slippery slope, there are aspects of Smolensky’s perspective that 
seem fundamentally correct to me. For example, I agree with 
his emphasis on process over structure. But we should re- 
member that this shifi in perspective was one of the foundational 
contributions of symbolic AI. 

While it is indeed wonderful to see a connectionist system 
exhibit nonmonotonic inference with respect to the past-tense 
verb production (Rumelhart & McClelland 1986), let us not 
forget that one of the most exciting things about EPAM was its 
ability to exhibit oscillation effects as it learned (Feigenbaum 
1963). There is a remarkable tendency for methodologically 
driven researchers to feel justified in dismissing as inconsequen- 
tial any work done outside of their own methodology. 

A problem-driven researcher is happy to use any techniques 
or methodologies that fit the problem at hand. If a computer 
program can be described in terms of differential equations, one 
should not hesitate to exploit appropriate mathematical results. 
Bravo. But Smolensky is not content to stop there. He wants to 
argue that the connectionist doorway into nondiscrete mathe- 
matics presents profound and revolutionary implications for the 
study of cognition. This is where Smolensky and I must part 
company. 

The role of discrete versus continuous mathematics in theo- 
ries of cognition is a nonissue if we resist methodology-driven 
reasoning. The more important question is whether or not 
knowledge can be modularized, accessed at variable levels of 
abstraction, and manipulated with procedures appropriate to 
those different levels of representation. That is, the real prob- 
lems we should address in trying to distinguish subsymbolic and 
symbolic processing are representational problems. 

Unfortunately, knowledge representation is not one of the 
strong points within the connectionist paradigm. To say that 
knowledge in a connectionist computer program is manifest 
within a system of weights and differential equations is not only a 
retreat from symbolic meaning representation, it’s a retreat 
from meaning altogether. In fact, I would argue that the concept 
of “distributed representations” works for connectionists the 
same way the concept of a “kludge” works for symbolic AI 
researchers. They are both absolutely necessary, undeniably 
convenient, abused with wild abandon, and potentially disas- 
trous in the long run. If pressed, we throw up our hands and 
admit that we don’t quite understand what we're doing here. 
But a clever kludge is not immediately apparent — and dis- 
tributed representations are quite clever: It’s very hard to see 
what’s wrong at first glance. 

The distributed view of representation promises to deliver a 
lot of tempting goodies: Soft constraints, graceful degradation, 
“best fit” pattern matching algorithms, learning from examples, 
and automatic generalization are nothing to sneeze at. Unfortu- 
nately, the reductionistic nature of a distributed representation 
also makes it extremely difficult to do the simplest things. We 
can identify a room based on a description of its furniture 
(Rumelhart, Smolensky, McClelland & Hinton 1986), but we 
have no natural way of identifying the relationship between the 
room and the furniture — they are only associated with one 
another in some unspecified amorphous manner (Charniak 
1987). A similarly fundamental problem arises with variable 
bindings (Feldman & Ballard 1982; Shastri & Feldman 1985). 

To be fair, a lot of connectionists are seriously addressing the 
question of representational power (Hinton 1986; Cottrell 1987; 
McClelland 1987; Pollack 1987; Shastri 1987; Touretzky & Geva 
1987), so we cannot assume that Smolensky has chosen to ignore 
representational issues for lack of activity in this area. Rather, 
Smolensky appears to acknowledge the role of representational 
power only as a “conceptual” issue which divorces it from the 
concerns of subsymbolic processing in his dichotomy. 

If we accept Smolensky’s-criteria for separating the concep- 
tual from the intuitive and the symbolic from the subsymbolic, it 
is easy to go along with his view of “soft adaptive” processes 

underlying “hard and brittle” rule application. If representa- 
tional issues are defined to be purely conceptual phenomena 
which need never intrude into the formal sanctity of numeric 
vectors and differential equations, then the prospect of sym- 
bolic/subsymbolic turf wars does indeed seem remote. But I’m 
not buying the Smolensky scenario. Representation is closer to 
the heart of the matter than Smolensky would have us believe. 

Can this treatment raise the dead? 

Robert K. Lindsay 
Mental Health Research Institute, University of Michigan, Ann Arbor, Mich. 
48109 

Much of the appeal of connectionism is that it is a form of 
associationism with a long history in philosophy and psychology; 
associationism’s most recent preconnectionist incarnation was 

behaviorism, whose demise was in large part due to its failure to 
solve, or even recognize, several key problems for which sym- 
bolic models have well-understood and indeed almost obvious 
natural solutions. Here are the most important: How is it 
possible to add new knowledge and abilities without disrupting 
the old? How is it possible to add new knowledge so that it builds 
on the old? How can knowledge and process be structured 
hierarchically? How can alternatives be formulated and consid- 
ered systematically? How can directed, logical, precise thinking 
be achieved, as it undoubtedly is by humans at least occasion- 
ally. The first major question to address to connectionism is 
whether it can supply solutions to these problems. So far it has 
not. What does it offer instead? 

I think the target article offers two different (though not 
incompatible) visions of connectionism, and each suggests a 
different advantage over symbolic models. The first seeks finer- 
grained and more “accurate” accounts of the macrophenomena 
allegedly only approximated by symbolic models. In this vision, 
subsymbolic is to symbolic as quantum mechanics is to classical 
physics. _ 
~ The second vision is also reductionist, but it sees the subsym- 
bolic as offering a different kind of account. In this vision, 
subsymbolic is to symbolic as dynamical systems theory is to 
classical automata theory, or as evolution is to learning theory. 
These two visions correspond to the two major distinctions 
between the paradigms and their mechanisms of semantic 
representation and learning. 

To avoid the perennial problem of arguing for substantive 
differences in computational power in the face of Turing equiv- 
alence, Smolensky attempts to distinguish syntactic equiv- 
alence from semantic equivalence. If we buy that, then the 
substantive subsymbolic/symbolic distinction is that symbolic 
models have single symbols that refer to single concepts, where- 
as in subsymbolic models the analog of a symbol is a “pattern of 
activity” among a set of units. This critical distinction is not 
made precise in the target article, and possibly it cannot be. 

Indeed, symbolic models often deal with concepts that are not 
represented in a simple one-symbol-to-one-concept manner. A 
symbol may denote an internal state of arbitrary complexity and 
one that changes over time. What distinguishes this representa- 
tional mode from the subsymbolic one is that it need not be 
uniform, it is hence potentially richer, and it has a name that 
other structures can refer to (a crucial advantage). 

Smolensky’s analysis goes wrong not in describing the sub- 
symbolic, but in an impoverished view of the symbolic level. 
His characterization of the latter (the most explicit being (24)) is 
closer to a limited type of symbolic model, rule-based system. If 
we are denied the refuge of Turing equivalence on the grounds 
of semantic distinctions, then I reserve the right to distinguish 
symbolic models in general from the special case of rule-based 
models in spite of the proven (syntactic) computational univer- 
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sality of production rules. Perhaps recognizing this objection, 
having given his characterization of symbolism, Smolensky 
waffles: “any one of them [the discrete characteristics of sym- 
bolic models] can be softened, but only by explicitly building in 
machinery to do so.” Of course to a “symbolist,” explicitly 
building in machinery is how the game is played, so to admit that 
it can be done is a serious concession. Indeed, if one looks at the 
extant AI symbolic models more broadly they do not uniformly 
differ from subsymbolic ones in the ways described, but only in 
explicitly eschewing the desire to be reductions-to-associa- 
tionism and one-principle learning. 

A major case in point is constraint satisfaction. Connectionist 
writings are at their most compelling when they argue that 
much of human cognition must be viewed as multiple, simul- 
taneous constraint satisfaction. Many symbolic models, say, of 
natural language understanding, do indeed prescribe a different 
view: a serial narrowing of possibilties by a sequence of neces- 
sary-condition filters in the form of syntactic and semantic well- 
formedness rules. However, the critical distinction between 
this and the constraint view is not whether all constraints can be 
uniformly represented (they need not and probably should not 
be), but whether the “rules” of agreement, deixis, logic, phys- 
ical plausibility, conversational convention, and so on, are 
viewed as necessary conditions; the symbolic paradigm does not 
require that they should be. Furthermore, these linguistic, 
logical, and empirical constraints are quite naturally charac- 
terized at the symbolic level as a heterogeneous set, and the 
compelling but informal connectionist arguments for constraint- 
based processing are usually presented in similar terms; it is 
unjustified to identify this characterization with the infini- 
tesimal, nonreferential, amorphous “constraints” of subsym- 
bolic models. 

The vision of connectionism as reformulation has a literature 
essentially distinct from the fine-grain-semantics vision just 
discussed. It is typified by Smolensky’s harmony theory, for 
example, and it attempts to demonstrate how general features of 
intelligence can arise from a uniform morass of associations by a 
unitary learning mechanism. The higher cognitive functions are 
explained indirectly and obliquely by showing how they emerge 
from a process of adaptation. These efforts have thus far had very 
limited success. 

What Smolensky is offering in Sections 8 and 9 is something 
quite different from the symbiotic account he offers earlier. It 
goes beyond an alternative account of established explanations 
to an entirely new analysis that will raise new questions and 
supply new answers. For example, one can envision connec- 
tionist accounts of the limits of predictability (perhaps based on 
the concept of “chaos”) that explain the landscape of cognition 
without offering detailed predictions of why John Doe chose 
chocolate rather than vanilla today, or even why some chess 
players are better than others. 

Connectionism gives up a lot when it abandons the successes 
of symbolic modelling; ultimately it must replace what is lost, 
but the path to that integration is not clear. Some of what it 
hopes to gain — the neuroscience connection — is illusory. Some 
reputed gains, for example, multiple soft constraint satisfaction, 
are well within the symbolic paradigm in principle if not in 
current fashion. One claimed accomplishment — a general 
learning mechanism — is thus far unproven on problems of 
realistic magnitude, and the suggested quest for parsimony is 
probably premature. But what remains could be the seed of a 
reformulation of the goals and scope of cognitive science. 
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Connectionism in the golden age of 
cognitive science 

Dan Lloyd 
Department of Philosophy, Trinity College, Hartford, Conn. 06106 

Subsymbolic and symbolic paradigms. Smolensky rejects hy- 
pothesis 10, the ecumenical view that connectionist models are 
mere implementations of symbolic models and their concep- 
tual-level explanations, a view implying that orthodox cognitive 
science (the Newell-Simon-Fodor-Pylyshyn view) remains the 
only genuinely cognitive game in town. Against this, Smolensky 
asserts (8c) that “complete, formal, and precise descriptions” of 
intuitive cognition will only emerge at the subconceptual level 
of connectionist models. (The closing lines of Section 2 seem to 
extend this claim to cognition in general.) Apparently the 
argument is roughly this: Since there will be no neat formalisms 
at the conceptual/symbolic level, there is nothing for the neat 
formalisms at the subconceptual/subsymbolic level to imple- 
ment. This is a weak ground for the autonomy of connectionism: 
Who knows whether there may someday emerge a neat concep- 
tual level model of cognition? Properly treated connectionism 
should not, I think, stake its future on the failure — a scruffiness 
that may be corrigible — of an allied cognitive enterprise. 

Rather, connectionism might well illuminate the successful 
formal treatment of cognition at the conceptual level. The 
autonomy of connectionism would then rest on distinctions 
between models (at the conceptual level), rather than on the 
distinction between levels. Models at the conceptual level 
should be the central aim of connectionism in any case: After all, 
we seek true psychology rather than subpsychology; we want 
our neatest formalizations to quantify over thoughts, beliefs, and 
representations in general, rather than over merely sub- 
thoughts, subbeliefs, and subrepresentations. 

The details of the conceptual level connectionist model of 
cognition are presently an open question, perhaps the open 
question, of connectionism. The familiar connectionist choice 
between local and distributed representation understates the 
theoretical challenge of conceptual level connectionism. First, 
“distributed representation” remains ambiguous in connec- 
tionist parlance. Sometimes individual processing units are 
assigned to features in the task domain, as, for example, in the 
circuit analyzer model described in Section 9.2. But sometimes, 
in contrast to featural representation, individual units are be- 
neath all interpretation. Such representations are fully dis- 
tributed, and no unit is dedicated to the representation of any 
particular aspect of the task domain. But discussions of connec- 
tionism rarely distinguish these interpretative options. 

More important, in practice most connectionist models use a 

mix of representational styles, often with local or featural repre- 
sentations sandwiched in between. As Terry Sejnowski (person- 
al communication) and Smolensky (Section 3) both observe, this 
heterogeneity makes the interpretation of networks at the con- 
ceptual level extremely complex. Expressed at the conceptual 
level, representations are local (since conceptual-level hypoth- 
eses refer to representations rather than their substrate), but 
their dynamics are complex, and not the dynamics of subcon- 
ceptual unit interaction (expressed by the activation and learn- 
ing equations). New interpretative applications of the analytic 
tools of linear algebra will be welcome here. (Smolensky, 1986 
and Section 3, and Sejnowski and Rosenberg, 1987, are among 
the pioneers in this enterprise.) I think it’s in keeping with the 
spirit of the target article and connectionism overall to aspire to 
discover neat formal principles at this higher level, since the 
principles will be distinctly connectionist. 
Connectionism and neural models. Smolensky also dis- 

tinguishes connectionist models from neural models. Hypoth- 
esis (12) summarizes the differences; (12c) reminds us that we 
don’t know much about the neural details and seems to be the 
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premise on which the distinction rests. But our ignorance of the 
neural details is another temporary problem. Like the distinc- 
tion between connectionist and conceptual-level hypotheses, 
this distinction is a shifty base for the autonomy of connec- 
tionism. Suppose we had all the relevant neural details, and 
used them to build a model of cognition. Neural dynamics are 
more complex and heterogeneous than those of current connec- 
tionism, but I presume that it isn’t essential to connectionism 
that its dynamic principles be as simple as those of today’s 
models. A total neural model would therefore nonetheless be a 
connectionist model. : 

Connectionism also needs all the neural inspiration it can get. 
At this writing, about one year has passed since the thundering 
arrival of the two-volume cavalry charge of the San Diego PDP 
group (Rumelhart & McClelland 1986; McClelland & Rumel- 
hart 1986). Workers loyal to the symbolic paradigm have had a 
year to rally their forces, and as these words see print the 
cognitivist countercharge should be underway, with each con- 
nectionist model the ground of a pitched battle. I expect the 
pennant in 1988 to be a toss-up: Both the subsymbolic and 
symbolic approaches will celebrate their successes, and each 
will be able to point to flaws and omissions, often in great detail, 
of the other approach. But there is one important foundation for 
cognitive modelling exclusive to connectionism, and that, of 
course, is its “neural inspiration.” At present, it would be bad 
tactics to abandon the goal of incorporating as much neural 
reality as possible. More important, the likelihood of connec- 
tionist models being true increases with the incorporation of 
neural dynamics. 

The golden age. Smolensky’s hypothesis 11 posits a funda- 
mental level for the subsymbolic paradigm, distinct from both 
the conceptual and neural levels. Following from the discussion 
above, I suggest the following substitution for hypothesis 11: 

(11) The fundamental level of the subsymbolic paradigm 
encompasses both the neural and conceptual levels. 

The golden age of cognitive science will be one in which 
(thoroughly understood) neuroscience (thoroughly) informs 
(thoroughly understood) conceptual level cognitive psychology. 
Connectionism as an autonomous science in the middle serves 
to catalyze the development of the golden theory, but one 
upshot of the two compressed discussions above is that connec- 
tionism, as a discipline in the middle characterized by the 
straightforward dynamics of numerous homogeneous pro- 
cessors, will fade away. Its sublimation is no loss, however, since 
the science it establishes will be connectionist in spirit. It will be 
the fulfillment, not the refutation, of the promising approach 
exemplified in Smolensky’s target article. 

Symbols, subsymbols, neurons 

William G. Lycan 
Department of Philosophy, University of North Carolina, Chapel Hill, N.C. 
27514 

This decade past, the philosophy of cognitive science has 
mongered a number of closely related distinctions: Software vs. 
hardware; dry abstract computation over predicate-calculus 
formulas vs. wet biologic cell chemistry; printed circuitry vs. 
warm fuzzy squirmy animals; pleasant air-conditioned high-tech 
computer center vs. cleaning out smelly cages; MIT vs. south- 
ern California. Great virtues of Smolensky’s target article are his 
rejection of such stereotypes, his recognition of the lush multi- 
plicity of levels of nature, and his attempt to clarify the relation 
between several of the levels as they are simulated in connec- 
tionist computer programs. Pardon my mentioning it again 
(Lycan 1981; 1987), but the all-too-common two-Level picture 

of nature — of brains, in particular, or even of computers 

themselves — is both completely untenable and responsible for 
many very bad ideas in the philosophy of psychology. 

I want to address the compatibility issue raised by Smolensky 
in his Section 2.4, particularly since it bears on the meth- 
odological advice he offers in closing. According to the “subsym- 
bolic paradigm,” only the subconceptual level, not the concep- 
tual level, affords “complete, formal, and precise descriptions of 
the intuitive processor.” Ipso facto, Smolensky argues, the 
“symbolic paradigm” would be ruled out, since it claims pre- 
cisely to afford such descriptions at the conceptual level. Thus 
incompatibility. 

That seems right on its face, but we should consider a simple 
irenic response: In his next section (see also 7.1), Smolensky 
grants that representation occurs within (not just as an epi- 
phenomenon of) the “subconceptual” level, and that connec- 
tionist models kzy on “fine-grained features such as ‘rounded- 
ness preceded by frontalness and followed by backness’” (sect. 
3, para. 2). The obvious objection is: Why does this keying itself 
not count as fully conceptual, fully symbolic activity? A first 
reply might be that the features or concepts thus mobilized are 
not ones that occur in the subject’s own working vocabulary. But 
nothing in the symbolic paradigm implies that they should.! A 
second reply might be that the topology is all wrong; symbolic- 
paradigm computation is linear, prooflike, discrete, monotonic, 
and so on, whereas connecticnist architecture differs in the 
fairly drastic ways Smolensky has described. But if subsymbols 
are still representors manipulated according to precise rules, 
they are still symbols, expressing concepts, in any traditional 
sense of those terms;2 the only question remaining concerns 
what the rules actually are. So far, the subsymbolic paradigm 
seems to belie its own claim of relocating real cognition to a truly 
subconceptual level of description (and so it threatens its own 
alleged claim [8c]). 

There is of course the issue of morphology. In the symbolic 
paradigm, a representation-token is a fairly salient chunk or 
stretch of hardware-at-a-time. In the subsymbolic paradigm, 
the token — though it exists — is distributed or highly scattered 
through the system, morphologically foggy or invisible. That 
paradigm difference is potentially important to computer sci- 
ence and to psychology, for all the reasons Smolensky pre- 
sents. But its importance to the theory of representation gener- 
ally is less clear. I can think of just three differences it would 
make in turn: (A) Though the subsymbolic paradigm allows for 
higher-level intentional reference to the external world by 
regions of hardware however scattered, such reference could 
not (according to the paradigm) be characterized in the terms 
normally considered appropriate to the computationally rele- 
vant higher level. As Dennett (1986, p. 69) has noted, the 
“brain-thingamabob [that] refers to Chicago” would per se 
have to be described statistically and in terms of the whole 
connectionist system or a very large mass of it. (B) The subsym- 
bolic paradigm vastly complicates any account of the inten- 
tionality of ordinary folk-psychological representations and of 
anything in standard “symbolic” theory that is at all like them. 
In Section 7.1 Smolensky makes a start at trying to capture 
ordinary mental reference, but his attempt is both vague in the 
extreme and apparently circular. (C) As Smolensky argues in 
Section 9.2, the subsymbolic paradigm sheds considerable 
light on the vexed competence/ performance distinction, as the 
symbolic paradigm does not. And I would add that it makes 
that distinction cognate with Davidson's (1970) otherwise trou- 
blesome thesis of the “anomalism of the mental”; if the sub- 
symbolic paradigm is right, then there are no strict psychologi- 
cal laws that can be couched in commonsensical English or 
even in real-time linear-computational terms. On the other 
hand, we can profitably see such laws as true under natural if 
extreme idealizations of “well-posedness” and unlimited time. 

To settle the incompatibility issue we would have to bicker 
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further over just what is required for being genuinely “concep- 
tual” or “symbolic.” Questions (A)—(C) are perhaps more impor- 
tant for cognitive science and its metatheory. 

NOTES 
1. Except possibly the idea that the symbols in use at the conceptual 

level are closely derived from those occurring in the propositional 
attitudes posited by folk psychology. But that idea plays no role in the 
issue that officially concerns Smolensky. 

2. Barring one in which conceptual activity must be conscious. But 
here again, despite Smolensky’s occasional allusions to consciousness, 
the notion has no relevance to the debate between his two paradigms. 

Epistemological challenges for 
connectionism 

John McCarthy 
Computer Science Department, Stanford University, Stanford, Calif. 94305 

1. The notion that there is a subsymbolic level of cognition 
between a symbolic level and the neural level is plausible 
enough to be worth exploring. Even more worth exploring is 
Smolensky’s further conjecture that the symbolic level is not 
self-sufficient, especially where intuition plays an important 
role, and that the causes of some symbolic events must be 
explained at some subsymbolic level. That present-day connec- 
tionism might model this subsymbolic level is also worth explor- 
ing, but I find it somewhat implausible. 

An example of Smolensky’s proposal is that the content of 
some new idea may be interpretable symbolically, but how it 
came to be thought of may require a subsymbolic explanation. A 
further conjecture, not explicit in the target article, is that an AI 
system capable of coming up with new ideas may require a 
subsymbolic level. My own work explores the contrary conjec- 
ture — that even creativity is programmable at the symbolic 
level. Smolensky doesn’t argue for the connectionist conjec- 
tures in his paper, and I won't argue for the logic version of the 
“physical symbol system hypothesis” in my commentary. I'll 
merely state some aspects of it. 

2. The target article looks at the symbolic level from a certain 
distance that does not make certain distinctions — most impor- 
tant being the distinction between programs and propositions 
and the different varieties of proposition. 

3. My challenges to connectionism concern epistemology 
only — not heuristics. Thus I will be concerned with what the 
system finally learns — not how it learns it. In particular, I will be 
concerned with what I call elaboration tolerance, the ability of a 
representation to be elaborated to take additional phenomena 
into account. 

From this point of view, the connectionist examples I have 
seen suffer from what might be called the unary or even 
propositional fixation of 1950s pattern recognition. The basic 
predicates are all unary and are even applied to a fixed object, 
and a concept is a propositional function of these predicates. The 
room classification problem solved by Rumelhart, Smolensky, 
McClelland and Hinton (1986) is based on unary predicates 
about rooms, e.g. whether a room contains a stove. However, 
suppose we would like the system to learn that the butler’s 
pantry is the room between the kitchen and the dining room or 
that a small room adjoining only a bedroom and without win- 
dows is a closet. As far as I can see the Rumelhart et al. system is 
not “elaboration tolerant” in this direction, because its inputs 
are all unary predicates about single rooms. To handle the 
butler’s pantry, one might have to build an entirely different 
connectionist network, with the Rumelhart et al. network hav- 
ing no salvage value. My epistemological concerns might be 
satisfied by an explanation of what the inputs and outputs would 
be for a connectionist network that could identify all the rooms 
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of a house, including those whose identification depends on 
their relation to other rooms. 

I might remark that the 1960s vision projects at Stanford and 
M.I.T. were partly motivated by a desire to get away from the 
unary bias of the 1950s. The slogan was “description, not mere 
discrimination.” Indeed, one of the motivations for beginning to 
do robotics was to illustrate and explore the fact that to pick up a 
connecting rod a robot needs to do more than just to identify the 
scene as containing a connecting rod; it requires a description of 
the rod and its location and orientation. Perhaps connectionist 
models can do this; and it seems to me very likely that it can be 
done subsymbolically. I hope that Smolensky will address this 
question in his response to the commentaries. 

A semi-heuristic question of elaboration tolerance arises in 
connection with NETTALK, described by Sejnowski and Rosen- 
berg (1987). After considerable training, the network adjusts its 
20,000 weights to translate written English into speech. One 
might suppose that a human’s ability to speak is similarly 
represented by a large number of synaptic strengths learned 
over years. However, an English-speaking human can be told 
that in the roman alphabet transcription of Chinese adopted in 
the People’s Republic of China the letter Q stands for the sound 
|ch|, and the letter X for the sound |sh|. He can immediately use 
this fact in reading aloud an English text with Chinese proper 
names. Clearly this isn’t accomplished by instantly adjusting 
thousands of synaptic connections. It would be interesting to 
know the proper connectionist treatment of how to make sys- 
tems like NETTALK elaboration tolerant in this way. 

In defence of neurons 

Chris Mortensen 

Department of Philosophy, University of Adelaide, S.A. 5001, Australia 

I take up Smolensky’s proposition (17) with which I am in 
agreement. J.J. C. Smart (1959) suggested nearly thirty years 
ago that there are various conscious judgements we make about 
ourselves which have fairly direct neural correlates. We judge a 
state (a mental state) of ourselves to be waxing or waning for 
example; and it is reasonable to think that some activity really is 
waxing or waning. Clearly the activity being dealt with will be a 
waxing and vaning in the relatively large-scale spatial and 
temporal structure of activity patterns. Smart also claimed to 
account for conscious judgements about perceptual states, such 
as colour experiences, as awarenesses of characteristic patterns 
of similarities and dissimilarities between broad structures of 
neural processes, without anything further being present to 
consciousness about the features of those structures responsible 
for the similarities. The point is that the aspects of waxing and 
waning are plausibly understood in terms of changes in gross 
summation or averaging of levels of individual neuronal activity, 
admittedly of distributed patterns of activities identified to 
consciousness in other ways as well. So some aspects of “con- 
scious phenomenology” are fairly close to the neural level (I 
mean the level of neural concepts, not of individual neurons). 

The idea that consciousness is a relatively coarse-grained 
register of neural activity works less well for the phenomenology 
of some of our perceptual states, however. Smolensky’s subsym- 
bolic methodology accounts well for undefinable judgements of 
similarity or rightness which are part of the intuitions of the 
experts, as it does for “the loss of conscious phenomenology with 
expertise.” It is nonetheless less plausible to claim with Smart 
that the contents of consciousness are mere similarities and 
dissimilarities in the case of, say, colours. The phenomenology 
of colours remains intractable, I would say. 

Smolensky allows that visual and spatial tasks might be an area 
where the subsymbolic and neural levels merge, a view which I 
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would argue is supported by evolutionary considerations. It is 
not such an unreasonable speculation that information about 
shape and spatial relationships might be most economically 
stored in ways (“soft constraints”) which utilise gross topological 
similarities to features present at the retina, especially if we are 
allowing modelling by analogue computers. By “economically” 
I mean relative to fairly simple energy and interference con- 
straints on cellular architecture such as those displayed by the 
optic nerve, which would seem in turn to require the observed 
neuroarchitecture of the primary visual areas of the cortex. The 
conclusion to draw here is that the conscious aspects of shape 
perception may simply be relatively coarse aspects of the spatial 
distribution of neural architecture, in line with Smolensky’s 
proposition (17) but not his proposition (6). The homunculi of 
the somatosensory system suggest a similar story. Sometimes, 
in other words, “look to the neurons” is not such bad advice as 
Smolensky makes out. 

A final point is that the interaction between neural, subsym- 
bolic, and symbolic levels defeats any simple reductive thesis of 
everything to the subsymbolic level. Public communication at 
the symbolic level ensures its autonomy, for example. I empha- 
sise also the ubiquity of the perceptual. The partial truth in 
empiricism pertains to the extent to which our concepts are 
permeated with the sensory: We cannot escape our prelinguistic 
evolutionary past. Hence, if the neural plays a greater role in the 
analysis of the sensory, it cannot be neglected in a proper 
account of other levels, and the completeness clause of Smol- 
ensky’s proposition (8c) is thrown into question. 

Connections among connections 

R. J. Nelson 
Department of Philosophy, Case Westen Reserve University, Cleveland, 
Ohio 44106 

I agree with most of what Smolensky says about the aims of a 
connectionist approach; nothing I have to say is meant to be 
critical of connectionist research in cognitive science. What I 
understand of it is impressive indeed. However, nothing Smol- 
ensky says convinces me that what he calls the “traditional 
cognitive model” can’t in principle supply the theoretical power 
a connectionist model can, and more. 

A lot depends on how we understand “traditional model.” For 
Smolensky it is based on a symbolic paradigm: Processors 
manipulate discrete symbols and follow algorithms; they oper- 
ate sequentially, that is, are von Neumann machines, and they 
mimic conscious rule interpretation. This characterization of the 
traditional model assumes that cognitive processes are modeled 
by programs operating on data, which is of course the common 
practice in artificial intelligence circles. 

Von Neumann machine programs determine sequences of 
fetch-execute cycles using a single port memory. Programs are 
generally written in high level languages and translated to or 
executed from, machine language level, using data structures 
such as lists, trees, semantic nets, and the like. Cognitive 
scientists are the first to maintain that the mind is not very much 
like the computer model structurally and that computer pro- 
cessing is not strongly equivalent to the cognitive, but perhaps 
stronger than mere simulation. According to connectionists, 
another shortcoming is that the model doesn’t seem to be of 
much use in explaining highly parallel cognitive activity or 
associative mnemonic processes. 

The connectionist’s is a pretty inadequate notion of contem- 
porary processors, or of sequential processors themselves on the 
subprogram level. Multiprocessors, which are also connec- 
tionist systems, geometrically speaking, can perform tasks in 
parallel using simultaneously all the feedback you can imagine 
and more. Beyond that, there are multiaccess memory main- 

frames that have multi-ported memories (an example is the Cray 
X-MP-2) and fast wired-in means of comparison which, when 
combined with multi-ported memories, obviate associative 
memory architectures. These are not von Neumann machines 
and have not been extensively used, so far as I know, in AI. In 
none of the literature with which I am familiar have they been 
used for simulating connectionist schemes in cognitive science. 

On the subprogram or logic level, a garden variety sequential 
computer is a discrete state system, i.e. a finite automation. 
Finite automata operate on decoded symbols (of an assembly 
system, for example) and hence its symbols are more finely 
grained than those presupposed in the “traditional model.” 
Finite automata are parallel (of course, as Smolensky says, what 
counts as parallel and serial depends on the level of description). 
For example, a network realizing the m+n relative recursions 
for the next state (f) and output (g) respectively of an FA 

y,0)=k k=0,1 
y(t + 1) = f(x,(, . - . . x, (ty, (0), - - - » Ym(t)) 

z(t) - g,(x,(t), ee! ee 

is about as parallel and interactive as you can get; every state 
element y is connected to and influences every other. 

Restricting remarks to machine language programming, in 
the processors we know about (either sequential or parallel) 
there are two levels of algorithm guiding a process, the al- 
gorithms written in the program and the algorithm embodied in 
the circuit logic. For instance, a program contains the instruc- 
tion ADD, and the logic level network, when obeying a com- 
mand, follows a built-in algorithm represented by a set of 
functionals of the type displayed above. These relations can be 
written as production rules, as can the machine language pro- 
gram. So they are both algorithmic in the same sense, while they 
are manifestly different in architecture. 

Thus the logic network level is subconceptual, subsymbolic, 
parallel, using finely grained representations and operates intu- 
itively in the sense that in following a program imposed at the 
conceptual level it executes another at the logic network level, 
but not by anything remotely similar to “conscious rule in- 
terpretation.” In addition, like connectionist models. logic net- 
works (if considered for modeling cognition) are at a level 
intermediate between the symbolic conceptual level and the 
hardware or neural level. This idea of embodied algorithm is 
important in the application of Church’s Thesis to cognitive 
science (Nelson 1987a). 

Whether the mind is anything like this is of course relatively 
unknown. It is quite clear that net recursions, although connec- 
tionist for sure, are not very much like the connectionist nets of 
the cognitive scientist. Nevertheless, assuming computa- 
tionalism is on the right track, the picture I have drawn is very 
similar to the connectionist’s: Cognitive activity goes forward on 
a symbolic level modeled in the traditional way, and is associ- 
ated in some way to a fine-grained subsymbolic, parallel, etc. 
process modeled by connectionist nets. I can say a lot more than 
that. A first-year computer engineering student could design a 
logic net realizing a given connectionist scheme using composi- 
tions of finite automata, i.e., ordinary discrete state methods, 
with the exception that the excitatory and inhibitory connectors 
among units of the network would bear associated integral 
rather than real values. I am not certain what limitation this 
would impose. But the automaton version has advantages (one 
of them is that there is no mystery in interlevel connectivity), 
and is far from being a “simulation” in the sense that a sequential 
program would be. This possibility shows both that the connec- 
tionist type of model is theoretically dispensable and is replace- 
able by a computationalist model that is by no means a simula- 
tion on a von Neuman machine. It’s done by realizing the 
connectionist’s heuristic model at a soft, logic level. I have little 
idea whether this is desirable, but it could be done. 
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But more than this, I follow Pylyshyn (1984) in suspecting that 
connectionist models are, qua explanations, of what he calls the 
“functional architecture” type. A necessary condition for cog- 
nitive modeling is that it appeals to the information-bearing 
content of representations. Put more formally, representations 
should be semantically interpretable essentially in the sense of 
model theory (or better, in the sense of some theory of reference 
that unfortunately does not exist yet); otherwise they are not fit 
operands of cognitive activity but just causal links in the func- 
tional architecture level. Furthermore, if Pylyshyn is right, 
connectionism cannot explain intentional attitudes. 

I am aware that this view is subject to serious dispute. It is 
quite possible that representations or “subsymbols” are seman- 
tically interpretable — content bearing. However, most of the 
uses of “representation” are quite ambiguous (representation of 
information is not the same thing as symbolic content-bearing 
information; and neither are the same as semantic net represen- 
tations of “meanings’). As this is so, Iam not certain that I would 
understand any claim that Smolensky’s subsymbols are content 
bearing in the relevant sense without first being instructed in 
connectionist terminology. 

It can be argued, Nelson (1987b) against Pylyshyn (1984), that 
finite automata logic circuit nets do manipulate content bearing 
symbols, and moreover can in principle account for proposi- 
tional attitudes, at least at the level of sensory expectations and 
perceptual belief (Nelson 1982). I accordingly advance the 
thesis that connectionist methods, though extremely valuable as 
heuristic tools, do not capture the distinctive qualities of cogni- 
tions and that logic nets — which are parallel, subsymbolic, 
operating below a conscious control level, and so forth — do. 

A great merit of connectionist research beyond the interest- 
ing and fruitful experiments it has produced is its serving to put 
the program paradigm finally in proper perspective. Pattern 
recognition, for instance, is far more appropriately approached 
on the connectionist (either Smolensky’s or a digital logic net- 
work level) than on the programming level. I suspect the same is 
true of language acquisition and elsewhere. This is hardly news; 
but the work of connectionist cognitive scientists helps make it 
sink in. 

Subsymbols aren’t much good outside of a 
symbol-processing architecture 

Alan Prince® and Steven Pinker> 
“Department of Psychology, Brandeis University, Waltham, Mass. 02254 

and ©Department of Brain and Cognitive Sciences, MIT, Cambridge, Mass. 
02139 

1. On the issues dividing connectionism and symbol systems. 
Smolensky’s analysis relies on a series of spurious theoretical 
conflations: 

1.1. Symbolic = conceptual, connectionist = subconceptual. For 

Smolensky, connectionist theories represent a radical departure 
because they invoke a subsymbolic or featural level of analysis, 
which contrasts with the consciously accessible concepts, easily 
labeled by words, that symbol-processing theories are commit- 
ted to. But in fact symbolic theories have no a priori commit- 
ment to the “conceptual” level. Phonological distinctive fea- 
tures are a perfect example, and they were brought into 
generative linguistics for precisely the reasons that connec- 
tionists now embrace subsymbols: to define appropriate dimen- 
sions of similarity and generalization (Jakobson, et al. 1951; 
Halle 1962). Similarly, subsymbolic features are routinely util- 
ized in syntax, morphology, and semantics. 

This is presumably why Smolensky excludes formal grammar 
from “the symbolic paradigm.” This is untenable. The “subsym- 
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bols” of linguistics are handled by rules and principles of an 
unmistakably symbol-processing type. Frequently discussed in 
the abstract as prototypical of the symbolic paradigm, linguistic 
theories are implemented as parsers in a variety of symbol- 
processing architectures. More concretely, connectionists’ own 
models of morphology and syntax (Rumelhart & McClelland 
1986; McClelland & Kawamoto 1986) bear scant resemblance to 
those of formal linguistics. In any case, “subconceptual” featural 
analyses can also be found in theories of nonlinguistic cognition 
(e.g., reasoning: Tversky & Kahneman 1983; vision: Marr 1982; 
Ullman 1984). 

1.2. Parallel = connectionism; serial = symbol systems. An al- 
gorithm is serial to the extent that it requires an order of steps in 
its execution. The symbolic paradigm has no a priori commit- 
ment to strict seriality. Among linguistic theories, for example, 
some are highly serialized, others rely entirely on sets of condi- 
tions applying simultaneously. Less obviously, connectionism 
itself supports serial processing, when units are wired into 
feedforward layers, or, as in Smolensky’s model, when “1nac- 
rodecisions” or stabilizations of parts of networks occur in 
specific orders. 

1.3. Context-sensitive = connectionism; context-free = symbol 

systems. Smolensky’s example of the context-sensitive/context- 
free distinction relies on a fairy tale about the acquisition of the 
English past tense, which we discuss below. We note that 
contrary to Smolensky’s assertion, grammatical rules do not 
have consequences “singly”; they take their meanings in the 
context of other rules, a fact at the heart of linguistic explanation. 
For example, the rules he cites — “past (go) = went” and “past (x) 
= x+ed” — have an intrinsic formal relation, due to the gener- 
ality of the regular rule: since [go] is a possible instance of [x], 
either rule is capable of applying to go. This relationship is 
resolved by a principle that adjudicates between the general and 
special cases (see Pinker 1984). Adding a new rule, then, can 
radically change the ecology of a grammar. This is “context- , 
dependence’ of exactly the right sort, and it dispels the mystery 
that Smolensky sees in the fact that adults’ went supplants 
children’s goed. 

1.4. Connectionist explanations are ‘‘exact’’; symbolic explana- 

tions are “approximate.” Smolensky implies that stochastic 
search at the microscopic level of a network provides an “exact” 
account of a cognitive process, whereas the structure of harmo- 
ny maxima, while a convenient summary of the network’s global 
behavior, describes the process only approximately. This con- 
flates two distinctions: macroscopic versus microscopic levels of 
analysis, and exact versus approximate descriptions. Two de- 
scriptions could each be exact at different levels; it seems odd to 
say, for example, that an account of brain function in terms of 
neurons is only “approximate, ” with the “exact” account lying at 
the level of atoms. Different levels of analysis are motivated — 
both of them true “exactly” if true at all — whenever systematic 
events at the macro-level are not exhaustively predictable or 
motivated by principles of interaction at the micro-level. 

This is exactly the case in many connectionist models: Far 
from being self-organizing, they are often wired by hand, and 
their parameters are tuned and tweaked, so that they behave 
properly (that is, they assume the global harmony maxima the 
theorist desires). This is not motivated by any connectionist 
principles; at the level at which the manipulations are effected, 
units and connections are indistinguishable and could be wired 
together any way one pleased. The question “Why is the 
network wired that way?” is answered by the macro-theory — 
“because phonological processes apply to adjacent segments”; 
“because the verb determines the role assigned to its object,” 
and so forth. These answers are not “approximate.” A successful 
symbolic theory may dictate the representations, operations, 
and architecture so robustly that any lower-level analysis that 
diverges from it — fails to “implement” it — will be a flawed 
approximation. 
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2. The adequacy of connectionist architectures. The argument 
that begins in a rejection of symbols for commonsense concepts 
and jumps to a defense of connectionism has a hole at its center: 
Without symbol-processing machinery, subsymbols don’t do 
much good. Connectionist models that are restricted to associa- 
tions among subsymbols are demonstrably inadequate. Consid- 
er these problems (For details, see Pinker & Prince 1988): 

2.1. Distinguishing structural relations and similarity relations. In 
symbol systems, a featural decomposition is just one of the 
records associated with an entity: The feature vector can be 
selectively ignored by some processes, and the entity is repre- 
sented by its own symbol, giving it an existence independent of 
the vector. In contrast, for a prototypical network using “dis- 
tributed” representations, the entity is nothing but its features. 
For example, in the Rumelhart & McClelland (1986) model of 
past tense acquisition, a word is represented as a pattern of 
phonological features. This leads to an immediate problem: 
representing linear order. Since the vector must represent both 
the word’s phonetic features and how they are concatenated, 
each feature must encode both kinds of information simul- 
taneously. Thus such “Wickelfeatures” encode the presence of 
three adjacent phonological features; for example, “unvoiced- 
unvoiced-voiced’ is one of the Wickelfeatures activated for stay. 
Smolensky cites the Wickelfeature as a clear case of a “sub- 

symbol.” But note the bait-and-switch: Subsymbols were origi- 
nally introduced as entities that are more abstract or fine- 
grained than symbols corresponding to commonsense concepts. 
But now they consist of features of an entity conflated with 
features of its context, combined into a single unit. This is 
necessary because the semantics of the features must do the 
work ordinarily carried out by symbol-processing architecture, 
in this case, preserving concatenative structure. The problem is 
that this move has disastrous empirical effects. Some words (e.g. 
albal, albalbal in the Australian language Oykangand) can’t be 
represented uniquely because they contain several instances of 
a Wickelfeature, and the model can’t count Wickelfeatures; it 
can only turn them on. It is difficult to explain psychological 
similarity: Wickelfeaturally, slit and silt have as much in com- 
mon as bird and clam. The model can learn bizarre, nonexistent 
morphological rules (e.g., reverse the order of the phonemes of 
the stem) as easily as common rules (e.g., do nothing to the 
stem; add d to the stem). Some rules (e.g., reduplicate the last 
syllable) can’t be learned at all. 

This illustrates a dilemma inherent in Smolensky’s program: 
Connectionists need to invoke subsymbolic features to get 
empirical successes, but their impoverished associationist 
mechanisms force them to use not the features demanded by the 
nature of the desired generalization, as revealed by macro- 
theory, but features that simultaneously carry burdens usually 
assigned to the symbol-processing architecture, such as pre- 
serving order. The subsymbols must do several jobs at once, 
none successfully. 

2.2. Keeping individuals from blending. With feature-only repre- 
sentations, representing two things simultaneously is prob- 
lematic. If early visual input is an activation pattern over feature 
maps, then without a serial attentional mechanism you can’t tell 
the difference between a green circle near a red square anda red 
circle near a green square. In the Rumelhart & McClelland 
model, various subregularities and the regular rule all compete 
to activate Wickelfeatures for the past form: When sing is input, 
you could get features for sing, sang, sung, singed, sanged, etc.., 
all superimposed. The model isn’t putting out any single word at 
all, just an unordered collection of features, many of them 
contradictory. Thus it couldn’t avoid blending what should be 
distinct competing outputs into bizarre hybrids such as toureder 
as the past of tour, or membled for mail. 

It is easy to conceive of hypothetical languages in which 
speakers compose words by probabilistically superimposing bits 
of material into any one of a family of related combinations, 

depending on the frequencies of competing generalizations they 
have been exposed to. It is significant that human languages 
don’t work that way. Connectionist networks, which superim- 
pose the features of distinct individuals onto a single vector, 
leave this a mystery. 

2.3. Distinguishing types and tokens. If objects are represented 
only in terms of their subsymbolic features, two objects with the 
same features get the same representation, and thus anything 
associated to one gets associated to the other. For the Rumelhart 
& McClelland model this raises many problems: ring and wring, 
for example, ought to go to rang and wrung, but the model can’t 
enforce this difference because the past form is directly associ- 
ated with the phonological representation of the stem. In tradi- 
tional theories, past forms are associated with symbols repre- 
senting the word itself, eliminating the problem. (Incidentally, 
adding semantic features won't help here.) Again, connectionist 
representations face conflicting demands, in this case, fostering 
generalization and keeping individuals distinct. 

2.4. Selectively ignoring similarity. Similarities among indi- 
viduals captured in their feature overlap must sometimes be 
shelved. For the past tense, phonological similarity plays a role 
in predicting forms within the system of irregular verb roots (cf. 

sting/ stung, cling/clung, stick/stuck), but when verbs are de- 
rived from nouns (which clearly cannot be marked as having 
“irregular past tense”), phonological ‘similarity goes out the 
window: You get He high-sticked Lafleur, not high-stuck. What 
is needed is some all-or-none mechanism that accesses featural 
information in some cases and ignores it in others. Nonlinguistic 
concepts can impose the same requirements. 

2.5. Knowledge above and beyond trained associations. If the 
only available machinery is a set of units and connections, then 
the obvious way to learn is to connect more strongly those units 
that frequently co-occur in the input. Virtually all connectionist 
models learn according to this associationist doctrine. Smol- 
ensky reproduces Rumelhart & McClelland’s version concern- 
ing the onset of overregularization in children: that it must be 
because the environment changes from a mixture of verbs in 
which irregulars predominate to a mixture in which regulars 
predominate. However, this is false: The ratio does not change. 
According to traditional symbolic explanations, the change oc- 
curs because the child memorizes past forms in the first stage 
and coins a rule capable of generating them in the second. All 
the data are consistent with this explanation. Thus we must 
reject Smolensky’s argument that overregularization shows that 
cognition is nonmonotonic, radically context-sensitive, etc. 

Attributing any of these phenomena to a separate rule-pro- 
cessor that is fed explicit culturally transmitted conventions is an 
illegitimate escape hatch. Not even the most fanatical yuppies 
will find a school that will instruct their child in the principles 
necessary to prevent him from saying high-stuck; nor do they 
have to. In fact, since the intelligence of connectionist models 
relies on specific input histories, whereas that of symbolic 
models relies on unconscious principles wildly unlike anything 
formulated in language curricula, explicit instruction will make 
people behave more like connectionist networks. 

In sum: Smolensky conflates logically distinct contrasts in a 
way that stacks the deck in favor of connectionism. His defense 
of connectionism is the claim that good cognitive models will 
decompose commonsense concepts into more fine-grained, 
subtle, or abstract features or “subsymbols.” But this claim is 
orthogonal to the connectionism debate. Prototypical symbolic 
theories, such as grammars, have always incorporated “subsym- 
bols”; prototypical connectionist models, because they choose 
an associationist architecture, require their subsymbols to ac- 
complish a set of mutually contradictory tasks and hence suffer 
as cognitive theories. 
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A two-dimensional array of models of 
cognitive function 

Gardner C. Quarton 
Mental Health Research Institute, University of Michigan, Ann Arbor, Mich. 

48109 

Imagine a large two-dimensional array of models (simulations) of 
cognitive processes. A family of closely related models is stored 
in a single column. At level one there is a simple model that 
takes as input some set of messages that represent some subset 
of plausible inputs to a human being engaged in a cognitive 
function and produces as output a set of messages that could, 
plausibly, represent the resulting output of the cognitive pro- 
cess. If this model is treated as a black box, we do not care, at 
level one, what computations go on inside as long as the output 
is determined in part by the input, and the “external behavior” 
of the black box bears some resemblance to human function. 

At level two, within the same column, and, therefore, within 
the same family of models, we have an elaboration of the model 
at level one. Some of the details of events within the level-one 
black box are simulated as new black boxes nested within the 
level-one black box. This model specifies to a limited degree 
how the behavior of the model at level one is implemented. To 
make the model work at level two, we shall have to develop 
mechanisms for computing the output of the level-two black 
boxes from their input, but we do not treat this implementation 
as part of the model that mimics the human cognition. Note that 
we can implement the external behavior of a black box in two 
ways. One, which can be called “simulation relevant,” requires 
the specification of a new layer of black boxes organized in a 
fashion that is part of the simulation. In other words, if we were 
checking the veridicality of the model, we would expect the 
external behavior of both the level-one and the external behav- 
ior of the level-two black boxes to mimic the cognitive process 
we are simulating. The second mode of implementation, which 
we shall call “simulation irrelevant,” makes the external behav- 
ior of the black box be what we wish it to be, but it can do this in 
ways that we know are not likely to be similar to the way in which 
such behavior is implemented in the human function being 
modeled. In many models of cognitive function using von 
Neumann computers, the actual computations within the lowest 
level of black boxes may be of the simulation irrelevant sort. Of 
course, in some sense this implementation is not irrelevant 
because it makes the model work. However, it is irrelevant in 
the sense that we make no claim that this implementation 
mimics the comparable implementation in what we are 
modeling. 

Now assume that the boxes in this column are filled in down to 
level one hundred. Each model except the level-one model is a 
further elaboration of the model above it, created by specifying 
nested black boxes, organized in a specified pattern, behaving in 
a specified way, and playing an implementation-relevant role. 
The black boxes in the innermost nest of level one hundred still, 
of course, are implemented in an implementation irrelevant 
fashion. Let us assume, however, that the level one hundred 
model is a simulation of a complete nervous system, and that the 
innermost black boxes represent molecules in membranes of 
neurons, and other entities at that level of biological detail. We 
have described just one column of the array. The other columns 
represent different simulating strategies. For instance, it may 
be that the first twenty columns represent modeling strategies 
based on the traditional symbolic paradigm. They are all differ- 
ent, but they share this feature. The next twenty are all connec- 
tionist. Still more columns may represent simulation strategies 
we have not thought of yet. It turns out, however, that many of 
the columns representing the symbolic paradigm behave plausi- 
bly at the upper levels, but as we move down the column it 
becomes increasingly difficult to pretend that the implementa- 
tions resemble those in the human being. The human being 
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after all does not run LIsP programs. As a result, the cells of the 
columns below the uppermost levels are blank. This will also be 
true for the columns representing connectionist strategies, but 
it is possible that the models are plausible a number of levels 
below those of the symbolic paradigm. 

Smolensky argues that “most of the foundational issues sur- 
rounding the connectionist approach turn, in one way or an- 
other, on the level of analysis adopted.” He ends up suggesting 
that there are three levels of analysis, the symbolic paradigm at 
the top, the subsymbolic paradigm in the middle, and the neural 
level at the bottom. He defends his choice of three levels rather 
than two because he does not wish to suggest that connectionist 
modeling operates at the neural level. 

I believe his three-level approach confounds the two ways of 
comparing models which are represented in my imaginary array 
by the two dimensions. Models differ in the strategy realized by 
their choice of implementing computation. They also differ in 
the degree of detail achieved by the simulation-relevant imple- 
mentation and the degree to which this simulation-relevant 
implementation is supposed to resemble the function of the 
human nervous system. 

Many neuroscientists would agree that connectionist models 
like those developed by Smolensky do involve more levels of 
simulation-relevant detail than do those in the symbolic para- 
digm. They may also agree that connectionist models seem to 
simulate not only the messages involved in the cognitive func- 
tion but also the message vehicles, that is, the connections and 
the connection strengths that change dynamically over time. 
However, most of them would say that we are still a very long 
way from a veridical simulation of a human nervous system, and 
it is not clear whether this strategy is the beginning of a path to 
such a simulation or a blind alley. 
We need detailed review papers that compare different mod- 

eling strategies (columns) at all the achieved levels of implemen- 
tation (rows). We need such reviews for many different types of 
cognitive function (a third dimension?). Smolensky deserves a 
great deal of credit for realizing that a programmatic description 
of his strategy — independent of his actual models, but using 
them as illustrations — would permit an intensive review of 
many of the problems he faces. The other commentaries in- 
cluded here should help identify those issues needing more 
examination. Taxonomies of parallel processing computer al- 
gorithms and a mapping of these on computer architectures 
share some features with taxonomies of connectionist models. 
The members of these categories seem to adopt idealizing 
simplifications that make them too simple to be useful simula- 
tions of nervous system distributed information processing, 
parallelism, and concurrent computation. A much more de- 
tailed exploration of parallel processing (concurrent) algorithms, 
parallel processing computers, and connectionist models may 
be needed before neurophysiologists can develop the necessary 
new hypotheses. , 

Sanity surrounded by madness 

Georges Rey 
Department of Philosophy, University of Maryland, College Park, Md. 
20742 

Smolensky’s account of connectionism is a mixture of positive 
and negative proposals. The positive ones (e.g., 8a and 8b) are 
generalizations of interesting results regarding specific cog- 
nitive processes; the negative ones (e.g., 8c) involve the rejec- 
tion of certain claims of “symbolic” approaches.! Smolensky is 
careful (in claims (la—e)) to admit the limitations of present 
connectionist results and to avoid dismissing the symbolic ap- 
proaches out of hand. However, he also wants to avoid the 
“genuine defeat” of regarding connectionist models as “mere 
implementations” of symbolic ones. I want to locate here just 
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where — between eliminating symbolic approaches for connec- 
tionist ones, and reducing the one to the other — Smolensky’s 
own position lies. 

Symbolic approaches are attractive for a wide variety of 
reasons, chief among them their capacity to deal with the 
following phenomena: 

(1) The structure of attitudes. There is a difference between 
thinking that someone loves everyone and that everyone is 
loved by someone or other; symbolic approaches capture this 
kind of difference by relating the agent to systematically differ- 
ent symbolic structures. 

(2) The fine-grainedness of attitudes. There is a difference 
between thinking that Mark is fat, Sam is fat, that man is fat, and 
the funniest American writer is fat, even where Mark = Sam = 
that man = the funniest American writer. There is even a 
difference between thinking that a square lies in a circle and that 
a square lies in a locus of coplanar points equidistant from a 
given point. Symbolic approaches permit distinguishing these 
attitudes by distinguishing syntactically between different, 
even cointentional symbolic structures to which an agent can be 
related. 

(3) The causal efficacy of attitudes. Ordinarily, someone 
thinking that someone loves everyone disposes the thinker also 
to think that everyone is loved by someone, but not vice versa; 
and ordinarily thinking that Mark is fat, and if fat then bald, can 
lead someone to think that Mark (but again not Sam, unless one 
thinks that Mark = Sam) is bald. Almost as ordinarily, people 
are biased toward positive instances in confirming hypotheses, 
ignore background frequencies in assessing probabilities, and 
are prone to falling into gambler fallacies. All these different 
patterns of thought cause people to behave in systematically 
different ways. If one supposes that the parts of structures 
needed in (1) and (2) are causally efficacious, symbolic ap- 
proaches can capture both these rational and irrational patterns 
of thought. 

(4) The multiple roles of attitudes. People often wish for the 
very thing that they believe does not presently obtain, for 
example, a drink of water, or that Sam (but not Mark) might 
come to dinner. Symbolic approaches capture this phenomenon 
by permitting different roles and access relations to the same 
symbolic structures. 

Against all these reasons for symbolic approaches, there are 
the well-known problems that Smolensky cites regarding how 
“brittle” and “impractical” they are: their failure to capture the 
extraordinary swiftness of perception and thought, their failure 
to perform “gracefully” in degraded circumstances. Connec- 
tionist models do appear in these respects to be betier. But, of 
course, their advantages in these respects will amount to little if 
they enjoy them at the expense of (1)—(4) above. 

To some extent, Smolensky anticipates this issue. What 
advantages there are to symbolic models can be captured by 
regarding them as special cases of connectionist models: Sym- 
bolic structures are, for example, to be identified with “patterns 
of activation” in connectionist systems. These special cases, 
however, are “crude” ones: Connectionism cought in the end to 
replace approximate symbolic approaches, just as quantum 
mechanics ought in the end to replace classical physics. 

Now, it is not at all clear to me how these patterns of activation 
will in fact be able to do all the work demanded by (1)—(4). Are 
the patterns structurally decomposable (e.g., into operators, 
quantifiers, connectives, terms) in the ways required by (1)? 
Can thev be distinguished finely enough to capture the distinc- 
tions demanded by (2)? Are they and their parts available for the 
multitude of different relations and interactions required by (3) 
and (4)? It is possible that Smolensky has positive answers to 
these questions; or perhaps he has other ways of capturing these 
phenomena, or an argument that they are spurious. But he 
needs to present a great deal more discussion to make any of 
these possibilities — to say nothing of the bold claims of (1f-k) - 
even remotely plausible. 

Suppose, however, that patterns of activation can be shown to 
play the role of symbolic structures. Why think that the latter 
structures are only crude approximations, that nonconscious 
processing is not tractable at the symbolic level, but “only” at 
the subsymbolic one? Smolensky’s pessimism in this regard is 
no doubt based in part on the aforementioned problems of 
symbolic models in AI. But, notoriously, AI has been largely 
concerned with emulating human behavior. Someone might 
suggest we look instead for laws of a system’s competencies. 
Why shouldn't we expect there to be symbolic laws capturing 
the competencies underlying, for example, (1) and (3)? 

Smolensky worries about this issue as well. He acknowledges 
the competence/performance distinction, but reverses the usu- 
al understanding of it: Where the symbolic approach presumes 
that the laws will characterize competencies, performance 
being explained as the result of interactions, Smolensky expects 
the laws to lie with performance, competencies being explained 
as special cases. But this reversal alone can’t be a problem, since 
a special case may still be a perfectly exact one. Where this 
difference in perspective makes a theoretical difference is in the 
way the speciality arises: The symbolic approach presumes 
competence laws will concern the internal states of the system, 
whereas Smolensky claims that competence laws will emerge 
only out of specific environmental conditions. The internal 
system by itself has no sharp conceptual order: From a concep- 
tual point of view it is a hodgepodge of associations governed by 
nonsymbolic “thermodynamic” laws. Competencies are “har- 
mony maxima’ arising out of a general network of chaos: “If in 
the midst of life we are in death, so in sanity are we surrounded 
by madness,” observed Wittgenstein (1956) in the midst of 
remarks on mathematics.2 

This is an ingenious and to my mind improbable claim, added 
to the general connectionist approach. To make it plausible, 
Smolensky needs to show not only that connectionism can 
accommodate (1)—(4), but also that it will do so in essentially the 
same way that his system learned Ohm's Law, without internal 
symbolic laws emerging. I don’t see how the example gener- 
alizes, however. People’s ability to handle both valid and invalid 
inferences of the sort noted in (3) seems to be quite general and 
nongraduated: Once you see the forms you can apply them to an 
indefinite variety of cases; they do not seem to be stimulus- 
driven in the way that Smolensky’s view requires them to be. 
But neither do I see that symbolic approaches are really in the 
end tied to one view of competence over the other, nor that 
connectionism ought to be so tied. Connectionist networks 
might still be interesting even if the more classical picture of 
competence and performance survived: Performance might 
often be the result of a network, for which a symbolic system is a 
fall-back. 

In any case, why think that being an implementation of a 
symbolic system would be a “defeat” for the connectionist? 
Should it turn out that there are symbolic laws, but that sym- 
bolic structures can be encoded gracefully only as patterns of 
activation, this would be of considerable significance for both a 
connectionist and a symbolic approach. It might provide the 
requisite account of the speed with which symbolic structures 
are accessed, and of the role of stereotypes and “family re- 
semblances” in much ordinary inference.3 Each approach could 
then benefit from the strengths of the other. One needn't, after 
all, be “the only president you've got” to pique the interest of 
investigators.* 

NOTES 
1. I acquiesce here only for the sake of argument in Smolensky’s 

presumption that connectionist networks are in some important way 
“nonsymbolic.” The case has yet to be made that, in the ultimate (as yet 
unprovided) explanation of why the networks succeed, nodes in the 
network should not be taken to refer to various features of, for example, 
the stimulus. Smolensky’s claim that they do not refer to features of 
which we are ordinarily conscious is quite beside the point; no symbolic 
story need make any such commitment. Perhaps the point for the time 
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being is this: T:.e computational atoms in a connectionist network do not 
seem to be the syntactic atoms over which a compositional syntax and 
semantics are standardly defined. However, particularly in view of the 
possibility that “patterns of activation” could ccrrespond to standard 
symbolic structures, even this weaker claim needs to be demonstrated. 

2. Smolensky in this way adds a new perspective to an old debate, 
siding here not only with the later as against the early Wittgenstein (with 
regard to which see also Kripke 1980), but with Hume against Kant, 
Skinner against Chomsky, and, most recently, Burge (1986) and Barwise 
(1986) against Fodor (1986; 1987). 

3. Which is not to say that the latter tricks exhaust ordinary in- 
ference. That many of our ordinary concepts, for example, exceed the 
stereotypes and resemblances that we may exploit in accessing them 
seems to be a further, rule-governed phenomenon that is not obviously 
amenable to a connectionist approach; for further discussion see Rey 
1983; 1985. 

4. I'm indebted to David Israel, Georg Schwarz, and Paul Smolensky 
himself for stimulating discussions of aspects of this topic. 

Making the connections 

Jay G. Ruecki 
Department of Psychology, Harvard University, Cambridge, Mass. 02138 

Among the many fundamental issues considered by Smolensky 
are the relationships between connectionist models and models 
at the symbolic and neural levels. Although I am generally in 
agreement with Smolensky, I would like to comment on each of 
these relationships. 

The symbolic level. A crucial issue here is whether connec- 
tionist models should be seen as competing with symbolic 
models, or if instead connectionist models are merely imple- 
mentations of symbolic models at a lower level of description. 
Smolensky explicitly rejects the implementational view (hy- 
pothesis 10, sect. 2.4.), and examines in some detail the points of 
incompatibility between the two frameworks (sections 2 and 5— 
9). Smolensky’s arguments are compelling. Nonetheless, one 
might suppose that even though these frameworks are presently 
incompatible, they might eventually be made compatible 
through a process of coevolution. That is, developments at one 
level might bring about changes in the formulation of models at 
the other level, so that in the long run connectionist and symbol 
level models might be seen as isomorphic. For example, some of 
the attractive emergent properties of connectionist systems, 
such as content-addressable memory and incremental learning, 
might be taken as primitives in symbolic level models that are 
assumed to be implemented on connectionist architectures 
(Hinton, McClelland & Rumelhart 1986; Oden 1987). 

This would be a happy outcome, but there are reasons to 
doubt that it will occur, and I would like to supplement Smol- 
ensky’s arguments by pointing out one problem that seems 
particularly difficult to overcome. The problem (touched on by 
Smolensky) concerns the discrete character of computation at 
the symbolic level. For example, in the typical symbolic model 
instances get assigned to categories in an all-or-none fashion. 
Similarly, production rules and other sorts of computational 
processes are executed when discrete conditions are met, and 
have discrete results. Recent work has shown that symbolic 
models can be “fuzzified” to some extent. Category mem- 
bership can be made a matter of degree, and logical operators 
that retain fuzzy information can be defined (Oden 1977). 
Similarly, production systems can take into account the degree 
to which the conditions of a production are satisfied, and the 
strength of the action taken can depend on the degree to which 
the rule’s conditions were met (Anderson 1983). 

One might imagine a way of identifying fuzzy symbols with 
distributed patterns of activity, thus bridging the gap between 
the symbolic and subsymbolic levels of description. For exam- 
ple, one might equate the degree to which the conditions of a 
production are satisfied with the degree to which a certain 
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pattern of activity is present. The problem with this approach is 
that knowing the degree to which a pattern is present is not 
sufficient for predicting the behavior of the system. One must 
also know which parts of the pattern are or aren’t present. If, ina 
connectionist model, a given pattern of activity in module A 
causes a related pattern of activity in module B, there is no 
guarantee that all module A patterns that overlap with the key 
pattern to the same degree will result in the same module B 
pattern. Under certain mapping functions the various B pat- 
terns could be wildly different. The point is that patterns of 
activity at the subsymbolic level are representations with 
causally efficacious internal structures. Symbol level descrip- 
tions, fuzzy or not, lose that internal structure, and thus seem 
destined to fail to distinguish between certain causally distinct 
states. 

The neural level. Smolensky compares neural and connec- 
tionist architectures along a variety of dimensions (Table 1 in 
target article), and the lesson he draws from this comparison is 
that the subsymbolic and neural levels are conceptually distinct. 
Thus, Smolensky argues, the subsymbolic level has a sort of 
autonomous existence. The implication is that although it would 
be nice to make connections between the subsymbolic and 
neural levels, there is plenty of work to be done at the subsym- 
bolic level alone, and this work should not be subject to argu- 
ments concerning neural implausibility. 

Although I agree with Smolensky’s arguments in principle, I 
think it is a mistake to emphasize the autonomy of the subsym- 
bolic level while at the same time downplaying the potential for 
making deep contacts between theories at the subsymbolic and 
neural levels. A variety of considerations suggest that the at- 
tempt to make connections between these levels should be 
given high priority. First of all, those of us who have bought into 
the computational theory of mind are committed to the assump- 
tion that a bridge between the computational and neural levels 
of description exists, and we must thus expect that sooner or 
later an understanding of the connection between these levels 
will be a part of psychological theory. Second, discovering 
which computational algorithms are used by humans and other 
animals is hard work, and it would be foolish to ignore any 
information that might inspire the development of new kinds of 
algorithms or help to choose between alternatives under consid- 
eration. Work at the neural level has produced a wealth of such 
information, and those of us working at the computational level 
would do well to take it into account. (Indeed, see Kosslyn 1987, 
for an excellent example of a computational theory motivated in 
part by neuropsychological and neuroanatomical findings.) 
Third, developing connections between neural and computa- 
tional models is likely to benefit neuroscientists as well as 
psychologists. As Smolensky points out, one reason that findings 
at the neural level have had relatively little impact on cognitive 
modeling is that, although we have a great deal of data about the 
brain, “these data are generally of the wrong kind for cognitive 
modeling” (sect. 4, para. 13). Although this is surely true to 
some extent, part of the problem is that computational models 
have typically ignored questions of neural instantiation, and 
thus have failed to generate empirical questions for neuroscien- 
tists to explore. By constructing theories that explicitly suggest 
how algorithms might be instantiated, theorists at the computa- 
tional level might generate empirical predictions for neuro- 
scientists to test. The results of these tests would in turn 
influence work at the computational level. This interplay be- 
tween the two levels could only be of benefit to us all. 

Conclusion. Smolensky’s analysis of the relationship between 
connectionist models and models at the symbolic and neural 
levels seems on target. Smolensky suggests that the relationship 
between connectionist and symbolic models is similar to that 
between quantum and classical mechanics. Symbolic models 
and classical mechanics offer approximate descriptions of their 
respective domains, but fail in ways that can be understood 
within the connectionist and quantum frameworks, respec- 



Commentary/Smolensky: Proper treatment of connectionism 

tively. Furthermore, the differences between the two accounts 
of each domain are fundamental, and in neither case can one 
theory be reduced to the other. I concur with Smolensky’s 
analysis, and have offered one more reason to believe that 
symbolic models cannot be reduced to subsymbolic models. 

I also concur with Smolensky’s analysis of the relationship 
between the suhsymbolic and neural levels. However, in this 
regard we have different visions of how cognitive science should 
proceed. Although he agrees that in the long run subsymbolic 
and neural models should be connected in a principled way, 
Smolensky stresses the autonomy of the subsymbolic level, and 
does not push for an increase in the interplay between research 
at the neural and computational levels. While I agree that work 
at the subsymbolic level will be fruitful regardless of the degree 
of contact with the neural level, I also suggest that attempts to 
make contact between the levels will be well worth the effort. 

Structure and controlling subsymbolic 
processing 

Walter Schneider 
Learning R&D Center, University of Pittsburgh, Pittsburgh, Pa. 15260 

The proper evolution of connectionism should relate multiple 
levels of description of cognition to constraints and mechanisms 
that affect each level of description. At present most connec- 
tionist processing involves associations between a set of input 
patterns and a set of output patterns. It has made important 
contributions: showing the interrelationships among patterns 
(e.g., Rumelhart, Smolensky, McClelland & Hinton 1986); 
developing more powerful learning rules (e.g., Rumelhart, 
Hinton & Williams 1986); and exploring the use of weights in 
representational and memory systems (e.g., Hinton & Plaut 
1987); see also Schneider & Detweiler 1987. In general it has 
done so with an extremely limited space of connectionist archi- 
tectures and processes. There have been exceptions (e.g., 
Touretzky 1986; Schneider & Detweiler 1987; and Smolensky 
1987). However, most connectionist models are similar to NET 
talk (Sejnowski & Rosenberg 1986) in that there is an input 
layer, an output layer, and zero to two intermediate layers. The 
units are simple, quasilinear components summing the inputs 
with a possible threshold or logistic output function. This is a 
very simple architecture compared to the brain. Although these 
simple multilayered systems are useful model paradigms, an 
exploration of a richer set of architectures is called for. 

Most connectionist modeling does not make contact with the 
structural or dynamic constraints of physiology. Smolensky 
remarks that neurophysiology provides the “wrong kind” of 
information for connectionism — providing structure rather than 
dynamic behavior. We do know a fair amount about the struc- 
ture of the brain (e.g., see Van Essen 1985) and this information 
can be used to identify connection patterns for complex com- 
putation (e.g., Ballard 1986; Schneider & Mumme 1987). We 
also have information about the dynamics of the system (e.g., 
that minimal neural activation times are in the range of 5 to 50 
milliseconds; and attention can modify a signal by a factor of 3, 
but requires 60 milliseconds to occur [Moran & Desimone 
1986]). Connectionism needs to examine a richer class of con- 
nective structures and modulatory processes. This richer class 
raises questions such as: What is the effect of heterarchical 
connectivity (as in Van Essen 1985)? How do multispeed learn- 
ing rates (Mishkin, et al. 1984; Hinton & Plaut 1987; Schneider 
& Detweiler 1987) influence working memory? And what com- 
putational advantage is there in using an attentional control 
structure (Schneider & Mumme 1987)? 
A richer set of architectures may show that symbol processing 

is more than an emergent property of connectionist vector 
processing. Smolensky (sect. 2.4., [10]) faults symbol processing 

when it suggests that connectionist processing is a low-level 
implementation of symbol processing. Smolensky claims that 
symbol processing is an emergent property of connectionist 
processing. This claim seems premature. Some properties, such 
as categorization of symbol-like entities (e.g., J. A. Anderson & 
Mozer 1981) are clearly emergent. Some properties, such as 
variable binding, require a whole control architecture of pro- 
cessing components (e.g., gating cells, binding cells) to main- 
tain, compare, and copy activation patterns (e.g., Schneider & 
Detweiler 1987; Smolensky 1987; Touretzky 1986). These are 
not emergent properties; rather, they are hand crafted to per- 
form population-based processing activities that produce sym- 
bolic-like processing. It is likely that as connectionist modeling 
expands from the limited associative mapping paradigm, a 
plethora of connectionist modules will be needed to accomplish 
extensive symbolic processing. Both connectionist and symbolic 
processing can make important contributions to an understand- 
ing of these behaviors. Rather than claiming that one level is the 
emergent or implementation version of the other, it would be 
better to identify the weaknesses and strengths of each and 
examine hybrid architectures that can better cover the space of 
human behavior. 

Smolensky suggests that symbol (S-knowledge) and pattern 
(P-knowledge) exist in one connectionist medium. This is possi- 
ble, but it may be that they are quite different processes, 
implemented very differently in the architecture. Symbolic 
learning often occurs in a single trial (see J. R. Anderson 1983). 
In contrast, connectionist learning typically occurs in the time 
scale of thousands and sometimes millions of trials (see simula- 
tions in Rumelhart, McClelland & the PDP Research Group 
1986). Human behavior exhibits qualitatively different types of 
behavior (see Shiffrin & Schneider 1977) when these two types 
of knowledge are being used. Single-trial learning typically 
results in slow, serial, effortful processing, whereas extended 
consistent practice produces relatively fast, parallel, low-effort 
processing. If the single-trial learning is done via specialized 
bind-cell processing (e.g., Touretzky 1986) one is no longer in 
the same medium. The bind cells can be built out of connec- 
tionist hardware or Turing machines. They operate on a meta- 
level above the connectionist vector processing hardware. In a 
model of human attentional processing (Schneider & Mumme, 
forthcoming), connectionist populations perform categorization 
and association operations. This allows the execution of P- 
knowledge; however, it takes hundreds of trials to develop 
reliable associative patterns. On top of an architecture of con- 
nectionist modules, a control mechanism is not emergent from 
the associative input/output processing, but rather from a new 
processing element to moderate the interactions that occur 
when multiple messages need to be multiplexed serially to limit 
crosstalk. The control level can itself be implemented in connec- 
tionist hardware. Since control processing operates at the meta- 
level, its activation modulates populations at the lower level. 
This provides a symbolic-like control structure modulating the 
vector transmissions. This control process can acquire rules in a 
single trial by maintaining the condition-action pairs in vector 
modules. Input vectors can be compared; if there is a match, the 
action vector is transmitted. As training progresses (over hun- 
dreds of trials), the input vector becomes associated to the 
output vector, allowing direct input to output association with- 
out the use of the control processing. 

Connectionism is a major advance in the modeling of cogni- 
tion and has already had a significant impact on psychology (see 
Schneider & Detweiler 1987). However, it must become a 
member of a team of concepts and tools for the study of 
cognition, rather than trying to produce a paradigm shift sup- 
planting its predecessors. A wide range of architectures should 
be explored in trying to cover a space of human behaviors while 
using available physiological, behavioral, and computational 
constraints. Neurophysiologists tell a story that if you can think 
of five ways that the brain can do something, it does it in all five, 
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plus five you haven't thought of yet. In the study of cognition we 
need to control our desire to have one answer, or one view, and 
work with multiple views. 

How fully should connectionism be 
activated? Two sources of excitation and 
one of inhibition 

Roger N. Shepard 
Department of Psychology, Stanford University, Stanford, Calif. 94305-2130 

Smolensky develops a persuasive case that connectionism pro- 
vides a significant level of description between the level of 
conceptual processes accessible to introspection and verbal 
communication, and the level of neural processes probed by 
physiologists. Advocates of the symbol manipulation approach 
to cognition (as well as advocates of the ecological approach to 
perception) may facetiously suggest that connectionism is there- 
by “filling a much needed gap” in the explanatory hierarchy. 
But, for me, connectionism has two exciting features that have 
been lacking in the discrete, symbolic, propositional theories 
that have dominated cognitive science. 

The two sources of excitation. First, connectionism offers a 
dense, massively parallel processing medium that in addition to 
facilitating ties to the neuronal substrate appears more suited to 
subserving such analog processes as apparent motion and imag- 
ined transformation (Cooper 1976; Shepard & Cooper 1982; 
Shepard & Metzler 1971). 

Second, connectionism promises to furnish, for what has been 
a largely ad hoc approach to cognitive modeling akin to that of 
engineering, a more deeply principled ground akin to that of 
physics. Instead of simulating human capabilities by larger and 
larger patchworks of heterogeneous, domain-specific heuristics, 
connectionism seeks a uniform framework within which diverse 
performances and competences arise from a small set of general 
principles. I am thus heartened in my own quest for a kind of 
Newtonian mechanics of mind that may be governed by “uni- 
versal” psychological laws (Shepard 1984, 1987). 

However, the general principles so far put forward by connec- 
tionists concern only the first two of the following three pro- 
cesses needed to achieve adaptive behavior. 

Three processes of adaptation. Inference: On the shortest 
time scale, upon encountering a particular situation, there is the 
process of adapting the internal representation and overt re- 
sponse to the requirements of that situation — even though no 
situation is ever completely revealed in the available sensory 
input. In a connectionist system, perceptual completion, in- 
terpretation, categorization, prediction, and inference are 
achieved by the passage, through state space, of the vector 
specifying the momentary levels of activation of all elements in 
the processing network to a stationary vector (or “eigenstate”), 
in accordance with what Smolensky terms the “activation evolu- 
tion equation” (sect. 2.3., para. 5) (formalizing, perhaps, relaxa- 
tion methods for the satisfaction of “soft constraints”). The set of 
situations giving rise to the same stationary vector correspond, 
in “psychological space,” to what I have recently termed a 
“consequential region” (Shepard 1987). 

Learning: On an intermediate time scale, over a series of 
encounters with situations from some ensemble, adaptation to 
the ensemble is achieved through principles governing the 
slower passage, through weight space, of a vector specifying the 
strengths of all connections between the elements in the pro- 
cessing network, in accordance with what Smolensky calls the 
“connection evolution equation,” formalizing, perhaps, “back- 
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wards error propagation” (sect. 2.3., 7; footnote 7). Through 
such “tuning,” an initially chosen vector of weights comes to 
determine increasingly refined trajectories and final states for 
the vector of activations and, hence, increasingly effective 
inference. 

Selection of initial structure: On the longest time scale, the 
topology and initial weights of a connectionist network are the 
result of some evolutionary process that generates systems with 
different connectivities and weights and eliminates those sys- 
tems that fail to learn to draw inferences appropriate to a 
particular ensemble of situations. For living systems, this pro- 
cess is that of mutation and natural selection. For artificial 
systems, it has been a more haphazard and idiosyncratic one of 
guess and test. In eithe: case, the imposed connectivity and 
initial weights determine what inferences are learnable and 
what sequences of situations are sufficient for such learning. 
A source of inhibition. Smolensky rightly observes (sect. 1.1, 

para. 3) that “much of the allure of the connectionist approach” 
is that through ‘uning of their own weights, connectionist 
networks “program themselves.” But nontrivial self-program- 
ming can take place only if some knowledge about the world in 
which the system is to learn is already built in. Any system that is 
without structure has no basis for generalization to new situa- 
tions (Shepard 1964; 1981; 1987). 

Smolensky also rightly emphasizes (sect. 7.1) that the purpose 
of the “subsymbolic” system must be to achieve a “veridical 
representation of ... environmental states, with respect to ... 
given goal conditions” (para. 1). However, in focusing on the 
achievement of such representations through the two processes 
of inference and learning, he (like other connectionists) seems to 
slight what I regard as the most challenging problem of cognitive 
science, namely, the problem of the source and internal form 
and operation of innate constraints. 

I distinguish internal representations of particular external 
objects from internalizations of general constraints that have 
governed all such objects and their transformations throughout 
evolutionary history. Particular foods, predators, or places of 
safety or danger, having varied from one locale or epoch to 
another, could not be internalized as innately fixed knowledge 
and are largely learned. However, the invariable constraints, 
such as that relative light/warmth alternates with relative 
dark/cold in a 24-hour cycle, or that space is locally Euclidean 
and three-dimensional, can be shown to have led to the inter- 
nalizations of a circadian clock and an intuitive grasp of ki- 
nematic geometry that are probably innate (Shepard 1984). 

Smolensky is quite explicit about the difficulty of characteriz- 
ing representations at the subconceptual level, which does not 
preserve the semantics of the consciously accessible conceptual 
level (sect. 5). Commentators have sometimes voiced the objec- 
tion that even if a connectionist system manifests intelligent 
behavior, it provides no understanding of the mind because its 
workings remain as inscrutable as those of the mind itself. The 
force of this objection is mitigated if the principles of learning 
and inference that govern the internal representations can be 
explicitly stated — even if the form of the internal representa- 
tions themselves cannot. However, because significant struc- 
ture must be built into the system before effective learning and 
inference can take place, we face two alternatives: Either we 
must formulate how the required structure is to be imple- 
mented at the inscrutable subconceptual level; or we must 
formalize explicit principles for the evolution of connectionist 
systems analogous to the principles of learning in individual 
systems. 
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From connectionism to eliminativism 

Stephen P. Stich 
Department of Philosophy, University of California, San Diego, La Jolla, 
Calif. 92093 

Smolensky’s portrait of connectionism is a welcome and exciting 
one. The burden of my commentary will be that if the project he 
describes can be carried off, the consequences may be much 
more revolutionary than he suggests. For if it turns out that 
Smolensky-style connectionist models can indeed be con- 
structed for a broad range of psychological phenomena of both 
the “intuitive” and the “consciously conceptualized” sort, then, 
it seems to me, a pair of very radical conclusions will plausibly 
follow. The first is that folk psychology — the cluster of common- 
sense psychological concepts and principles that we use in 
everyday life to predict and explain each other's behavior — is in 
serious trouble. The second is that much psychological theoriz- 
ing that cleaves to what Smolensky calls the “symbolic para- 
digm” is in serious trouble as well. In both cases, the trouble I 
envision is the same: The theories are false and the things they 
posit don’t exist. Since space is limited, I'll limit my remarks to 
theories in the symbolic paradigm, and leave folk psychology for 
another occasion. 

A central thesis in Smolensky’s rendition of connectionism is 
that a “complete, formal account of cognition” does not “lie at 
the conceptual level” but at the “subconceptual level” (sect. 2.4, 
para. 5). Earlier, in making much the same point, he tells us that 
“complete, formal and precise descriptions of the intuitive 
processor are generally tractable not at the conceptual level, but 
only at the subconceptual level” ((8)c, sect. 2.3, para. 7, empha- 
sis added). But what exactly does Smolensky have in mind when 
he claims that a complete, formal, precise account of cognition is 
to be found only at the subconceptual level? As I read him, what 
Smolensky is claiming is that the real, exceptionless, counterfac- 
tual supporting generalizations or laws of cognition are only to 
be found at this level. At the conceptual level, by contrast, such 
generalizations as we have will be at best rough and ready 
approximations that may be more or less accurate within a 
limited set of boundary conditions, and generally not very 
accurate at all when we go outside those boundary conditions. If 
this thesis turns out to be correct, then the cognitive states and 
processes posited by connectionist models will be the ones 
describable by genuine laws of nature, but there will be no laws 
describing the doings of the semantically interpreted mental 
symbols posited by theories at the symbolic level. If we want 
accurate predictions of the phenomena, they will have to be 
sought at the subsymbolic level. As Smolensky would be the 
first to agree, the thesis he sketches is at this peint only a hopeful 
guess. To defend it requires that connectionists actually build 
models for a broad range of phenomena, and demonstrate that 
they do indeed yield more accurate predictions than competing 
models at the conceptual level. But let us assume that the thesis 
will ultimately be established, and consider the consequences 
for theories and posits at the conceptual level. 

To start us off, an analogy may prove helpful. For Lavoisier, in 
the last quarter of the 18th century, heat was caused by caloric, 
an “exquisitely elastic fluid” “permeating all nature, which 
penetrates bodies to a greater or lesser degree in proportion to 
their temperature” (quoted in Gillispie 1960, p. 240 & p. 239). 
When Sadi Carnot formulated the second law of thermody- 
namics in 1822, he “still handled caloric as flowing from a real 
reservoir of heat down acontinuous gradient” (Gillispie 1960, p. 
241). For many years the theory of heat that posited caloric was 
embedded in an evolving, progressive, sophisticated research 
program that generated both explanations of observed phe- 
nomena and increasingly accurate predictions. Ultimately, 
however, that theory was rejected and replaced by the kinetic 
theory. Though the detailed history of this transition is a compli- 

cated story, a crucial factor was that the new theory sustained 
more accurate predictions and better explanations over a broad- 
er range of phenomena. Moreover, since the kinetic theory 
posits no “exquisitely elastic fluid,” and recognizes no laws 
governing its flow, those who were prepared to grant that the 
kinetic theory is better concluded that caloric theory is false, and 
that the fluid it posits does not exist. 

Consider now the analogies that will obtain between this case 
and the case of conceptual level psychological theories if Smol- 
ensky’s thesis turns out to be right. Like caloric theory, the 
conceptual paradigm has sustained an evolving, progressive, 
sophisticated research tradition. But if Smolensky is right, we 
will find that the generalizations of conceptual level theories 
(like those of caloric theory) are only approximations and apply 
only in limited domains, while the generalizations of subconcep- 
tual level theories (like those of kinetic theory or its successors) 
are “complete” and “precise.” Against the background of this 
analogy, it is tempting to conclude that if Smolensky’s thesis is 
right, then conceptual level theories are false. and the entities 
they posit do not exist. 

There is reason to suppose that Smolensky himself would not 
resist the first half of this conclusion. For at one point he tells us 
that “the relationship between subsymbolic and symbolic mod- 
els is . . . like that between quantum and classical mechanics” 
(sect. 5, para. 11). But, of course, if quantum mechanics is right, 
then classical mechanics is wrong. Whatever its virtues, and 
they are many, classical mechanics is a false theory. 

The second half of the conclusion I'm trying to coax from my 
analogy is the more distinctively eliminativist half. (For some 
background on “eliminativism” see P. M. Churchland 1894, pp. 
43-49; P. S. Churchland 1986, pp. 395—99; Stich 1983, Chapter 
11.) What it claims is that the entities posited by conceptual 
level theories are like caloric in one very crucial respect; they do 
not exist. From his one brief mention of “naive . . . eliminative 
reductionism” (sect. 10, para. 2). I'd guess that Smolensky 
would be more reluctant to endorse this half of my conclusion. 
Nor would such reluctance be patently unjustified. For it is 
certainly not the case that whenever one theory supplants 
another we must conclude that the entities posited by the old 
theory do not exist. Often a more appropriate conclusion is that 
the rejected theory was wrong, perhaps seriously wrong, about 
some of the propertic s of the entities in its domain, or about the 
laws governing those entities, and that the newer theory gives 
us a more accurate account of those very same entities. Thus, for 
example, pre-Copernican astronomy was very wrong about the 
nature of the planets and the laws governing their movement. 
But it would be something of a joke to suggest that Copernicus 
and Galileo showed that the planets Ptolemy spoke of do not 
exist. So to defend the eliminativist half of my conclusion, I must 
argue that the connectionist revolution, as Smolensky envisions 
it, bears a greater similarity to the rejection of the caloric theory 
than to the rejection of geocentrism. 

In arguing the point, it would be useful if there were, in the 
philosophy of science literature, some generally accepted ac- 
count of when theory change sustains an eliminativist conclu- 
sion and when it does not. Unfortunately, however, there is no 
such account. So the best we can do is to look at the posits of the 
old theory (the ones that are at risk of elimination) and ask 
whether there is anything in the new theory that they might be 
identified with. If the posits of the new theory strike us as deeply 
and fundamentally different from those of the old theory, in the 
way that molecular motion seems deeply and fundamentally 
different from “exquisitely elastic” caloric fluid, then the elim- 
inativist conclusion will be in order. Though, since there is no 
easy measure of how “deeply and fundamentally different” a 
pair of posits are, our conclusion is bound to be a judgment call. 
That said, let me offer a few observations which, I think, support 
a proeliminativist judgment. 

Smolensky notes, quite correctly in my view, that in the 
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dominant approach to cognitive modeling (the approach that he 
calls the “symbolic paradigm”) symbols play a fundamental role. 
He goes on to note that these symbols have a pair of fundamental 
characteristics: They refer to external objects and they are 
“operated upon by ‘symbol manipulation’ ” (cf. sect. 1.3., para. 
3). Smolensky does not elaborate on the idea that symbols are 
operated on by symbol manipulation, but I take it that part of 
what he means is that, in the models in question, symbol tokens 
are assumed to have a reasonably discrete, autonomous exis- 
tence; they are the sorts of things that can be added to, removed 
from or moved around in strings, lists, trees and other sorts of 
structures, and this sort of movement is governed by purely 
formal principles. Moreover, in the symbolic paradigm, these 
sorts of symbol manipulations are typically taken to be the 
processes subserving various cognitive phenomena. Thus, for 
example, when a subject who had previously believed that the 
hippie touched the debutante comes to think that the hippie did 
not touch the debutante, symbolic medels will capture the fact 
by adding a negation operator to the discrete, specifiable symbol 
structure that had subserved the previous belief. Similarly, 
when a person acquires a new concept, say the concept of an 
echidna, symbolic models will capture the fact by adding to 
memory one or more symbol structures containing a new, 
discrete, independently manipulable symbol that refers to a 
certain class of external objects, namely echidnas. 

In connectionist models, by contrast, there are no discrete, 
independently manipulable symbols that refer to external ob- 
jects. Nor are there discrete, independently manipulable clus- 
ters of elements (or “subsymbols”) which may be viewed as 
doing the work of symbols. When a network that had previously 
said yes in response to “Did the hippie touch the debutante?” is 
retrained to say no, it will generally not be the case that there is 
some stable, identifiable cluster of elements which represent 
the proposition that the hippie touched the debutante, both 
before and after the retraining. And when a network that was 
previously unable to give sensible answers to questions about 
echidnas is trained or reprogrammed to give such answers, 
there typically will not be any identifiable cluster of elements 
which have taken on the role of referring to echidnas. Instead, 
what happens in both of these cases is that there is a widespread 
readjustment of weights throughout the network. As Smolensky 
notes, the representation of information in connectionist models 
(particularly in parallel distributed processing style models) is 
widely distributed, with each unit participating in the represen- 
tation of many different aspects of the total information repre- 
sented in the system. This radical disparity between strategies 
of representation in symbolic and PDP models makes a smooth 
reduction — or indeed any reduction — of symbols to elements 
(or to patterns of activity) extremely implausible. Rather, I 
submit, the relation between mental symbols and connectionist 
elements (or patterns of activity) is akin to the relation between 
caloric and molecular motion. If this is right, then in those 
domains where connectionist models prove to be empirically 
superior to symbolic alternatives, the inference to draw is that 
mental symbols do not exist. 

From data to dynamics: The use of multiple 
levels of analysis 

Gregory O. Stone 
Department of Psychology, Arizona State University, Tempe, Ariz. 85281 

While focusing on the substantive differences between connec- 
tionism and traditional cognitive science, Smolensky’s analysis 
illustrates a fundamental epistemological difference. In the 
traditional approach, the symbolic level is the “correct” level of 
analysis. Other levels, such as hardware implementation, are 
effectively considered irrelevant. In contrast, Smolensky argues 
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that “successful lower-level theories generally serve not to 
replace higher-level ones, but to enrich them, to explain their 
successes and failures, to fill in where the higher-level theories 
are inadequate, and to unify disparate higher-level accounts.” 
Thus, connectionism may portend a revival, in cognitive sci- 
ence, of theoretical pluralism — the philosophy that no single 
perspective can fully account for observed phenomena (James 
1967). 

Smolensky presents three levels of analysis (neural, subcon- 
ceptual, and conceptual) as a priori theoretical constructs. I will 
argue, however, that the choice of levels derives from a strategy 
of maximizing the explanatory power of the pluralistic frame- 
work in which they are embedded. In other words, levels of 
analysis are primarily pragmatic constructs. 

What are the advantages of a pluralistic methodology? One 
common objection to connectionist models is that their com- 
plexity hinders an understanding of what they are doing and 
why. This conceptual opacity is, to some extent, a price paid for 
their flexibility and generality of application, allowing models 
built from a few basic mechanisms to account for a broad range of 
disparate phenomena. On the other hand, mechanisms ex- 
plicitly tailored for specific operating characteristics tend to be 
limited in their generality. This often leads to a profusion of 
unconnected, but eminently testable and transparently in- 
terpretable, special-purpose models. A methodology which 
uses and interrelates both levels of analysis can exploit the 
strengths and overcome the weaknesses of each when consid- 
ered in isolation. 

A concrete example will help to clarify this point. Reeves and 
Sperling (1986) asked subjects to report, in order, the first four 
items (digits) from a rapidly presented visual sequence. But 
subjects first had to shift their attention from another part of the 
visual field to the digit stream. The attention shift altered the 
perceived order of items in the sequence, producing an invert- 
ed-U shaped recall function. In the first phase of their analysis, 
they found that a scalar precedence or order score for each item 
in each condition provided a very powerful account of the data. 
However, this analysis invoked a large number of parameters 
and offered no conceptual insight into why the observed prece- 
dences were obtained. Their second level of analysis produced a 
close fit to these precedence scores by treating them as the 
result of the temporal integration of an item’s input strength. A 
slow-opening attention gate reduced the input strength of early 
items, which lead to the inverted-U shape of precedence scores 
across position. This level of analysis provided a conceptual 
framework with greater parsimony; however, it was domain- 
specific and provided no link to temporal order in short-term 
memory in the absence of an attention shift. 

Grossberg and Stone (1986) extended the analysis to the 
subconceptual level by mapping the Reeves and Sperling model 
into the short-term memory dynamics of adaptive resonance 
theory. The analysis began with an abstraction from the ex- 
tremely complex activation dynamics to an emergent and more 
tractable functional form relating the relative precedence 
strengths. This emergent functional form is necessary for stable, 
long-term encoding. When this functional form was applied to 
the Reeves and Sperling model, several unexpected principles 
of short-term memory dynamics and attentional gain control 
were revealed. Furthermore, the experimentally derived order 
scores were accounted for using a mechanism which plays a 
critical role in adaptive resonance theory treatments of other 
short-term memory phenomena, as well as treatments of catego- 

rization, unitization, and contextual facilitation (see articles 
reprinted in Grossberg 1987a; 1987b). The key point in this 
example is that it would have been difficult — if not impossible — 
to have achieved the same degree of insight by mapping the data 
directly into the class of possible short-term memory dynamics. 

Each level of analysis in the preceding example served an 
important role in the overall methodology. 

The descriptive level of analysis encapsulates the raw data in a 
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more tractable, but relatively atheoretical form. Computational 
overhead is reduced in the search for mechanisms and func- 
tional forms with optimal explanatory power, and a descriptive 
model can reveal fundamental structure underlying the data. 
The functional level of analysis expresses structure in the data 

in terms of high-order conceptual constructs. At this level, one 
develops functional characterizations of processing, such as 
temporal integration of input strength. This is a potentially 
broad class of analysis, of which the symbolic paradigm is a 
special case. 

The dynamic or subconceptual level of analysis provides 
mechanistic details underlying the broad constructs of the 
functional level. What appeared to be simple, domain-specific, 
processes are now seen as the subtle interaction of many more 
general mechanisms. 

Perhaps the most important component of the methodology is 
the development of overarching design principles that interre- 
late the levels of analysis and govern their theoretical develop- 
ment. Because functional constructs arise from subtle, non- 
linear interactions between dynamic mechanisms, alteration of 
a single mechanism can affect the performance of the whole 
system. Asa result, previous predictive capability can be lost in 
some attempt to introduce new predictive capabilities. Design 
principles identify the critical features of a mechanism responsi- 
ble for a desired operating characteristic. If a mechanism must 
be redesigned, previously identified principles remain to guide 
the process; one need not begin again from scratch. Design 
principles provide a conceptual bridge between dynamic mech- 
anisms and functional constructs, and thus help elucidate what a 
dynamic system model is doing and why. 
Work remains to be done in developing a powerful, pluralist 

framework for cognition and behavior. In particular, much of 
the methodology currently used by both the symbolic and the 
connectionist paradigms will need to be replaced or reworked. 
Smolensky’s insightful investigation of fundamental assump- 
tions is an important contribution to the development of this 
framework. Unless the development of a pluralist methodology 
continues, connectionism will fail to achieve its great explanato- 
ry potential. 
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On the proper treatment of thermostats 

David S. Touretzky 

“Eliminative” connectionists (Pinker & Pr'1ce 1988) are the 
radicals of the connectionist movement. They make the boldest 
claims with the least evidence. The contribution of Smolensky’s 
target article is that it eloquently states (and even numbers) the 
points of faith that define the eliminative stance. I cannot prove 
Smolensky’s PTC (proper treatment of connectionism) wrong, 
but I believe its principal and most radical claim, that formal 
symbolic theories of intelligence will turn out to be inadequate 
for explaining human performance, is very badly in need of 
some supporting data. The problem is most noticeable with 
respect to language. 

Hypothesis (16) of PTC assigns responsibility for language to 
an intuitive processor, while (8a—c) reject the notion that this 
processor might be implemented in the brain as a formal 
sequential rule interpreter. Many nonconnectionists share this 
view. But in the collective restatement of (8a—c) as (8), PTC 
makes its far stronger, radical claim: that it is impossible in 

principle to give an accurate account of intuitive phenomena at 
the symbolic level. Such an account can be achieved at a lower, 
nonsymbolic level, we are told. This is where eliminativists get 
themselves into trouble. 

PTC is not 2 competence theory, it is a performance theory. 
On the other hand, PTC is supposed to be more abstract than 
the neural level; it is not obligated to explain every hesitation 
and every muscle twitch. What sorts of performance phe- 
nomena might PTC account for that symbolic theories cannot? 
In any physical system there are bound to be insignificant jitters 
that can only be explained by going to a lower level of descrip- 
tion. In order for PTC to be confirmed, its supporters must be 
able to demonstrate significant linguistic effects that do not 
admit symbolic-level explanations. This introduces two themes 
for debate: Which performance effects are significant, and 
which of those are not covered by symbolic-level theories? 

Consider a thermostat with setpoint T, whose behavior is 
determined by the following rule: 

IF T < Tg THEN turn-on(furnace) 
ELSE turn-offifurnace) 

It makes no difference that the thermostat has no symbols and 
no rule interpreter inside it; the above rule is a description of the 
thermostat’s behavior that any cognitive scientist would feel 
comfortable with. It is a formal rule because it generates precise 
predictions and can be implemented in various ways. It is a 
symbolic-level rule because it is expressed as relationships 
among the terms that actually define the domain: ambient 
temperature, setpoint, and furnace activity. It makes no refer- 
ence to mechanisms or processes whose behavior is unrelated to 
the domain description. 
Now suppose that as the switch inside the thermostat closes, 

it bounces a few times, causing a brief oscillation in the output 
signal. Furthermore, imagine that the furnace which the ther- 
mostat controls emits heat the instant it is told to do so. Our 
hypothetical thermostat-furnace combination therefore pro- 
duces a few milliseconds of temperature oscillation whenever T 
drops below T,, followed by a steady temperature increase until 
T, is again exceeded. But the formal account of the thermostat’s 
behavior says nothing about bouncing switch contacts, because 
that is an implementation detail that has nothing to do with the 
domain. Therefore it cannot explain the oscillation. 
The temperature oscillation problem may be dealt with in 

several ways. (i) Classify extremely short-duration phenomena 
as irrelevant on teleological grounds (the thermostat's purpose is 
broad-timescale temperature control, not microregulation) or 
psychophysical ones (people who choose the thermostat’s set- 
point are not sensitive to the oscillations). In either case the 
oscillations are excluded from the data. (ii) Discount the escilla- 
tions as performance error: They may be detectable, but need 
not be explained by a competence theory of temperature con- 
trol. (iii) Declare the oscillations relevant and significant, and 
redo the formal account. This leads to a more complex behav- 
ioral rule for the thermostat, based on the difference between 
the current time and the time the ambient temperature most 
recently dropped below the setpoint. Because it is a symbolic 
level theory it still says nothing about bimetallic switches, and 
thus does not explain the cause of the oscillations; it merely 
reproduces them. (iv) Declare that in reality there is no formal 
symbolic level, therefore it is impossible to give a fully adequate 
account of thermostatic temperature control at this level of 
description. Instead, we should model thermostats as systems of 
contacts and springs and develop equations to describe their 
switching dynamics. 

Which of these strategies is the correct one? Each has been 
applied to some aspect of language: (i) excludes nonlinguistic 
phenomena such as breathing patterns while speaking; (i) 
relieves us of the need to account for ungrammatical utterances 
in a competence theory; (iii) argues for the recognition of what 
are obviously implementation-dependent limitations, such as 

BEHAVIORAL AND BRAIN SCIENCES (1988) 11:1 55 



Commentary/Smolensky: Proper treatment of connectionism 

people’s inability to handle deeply center-embedded sen- 
tences. In other words, (iii) shifts the emphasis from compe- 
tence to performance, which, as Smolensky notes, is in part 
what distinguishes cognitive theories from linguistic ones. The 
eliminative heresy of PTC is (iv); it is also espoused by Rumel- 
hart and McClelland (1986a; 1986b). 

Even a diehard eliminativist would agree that the significant 
aspects of thermostat behavior can be described perfectly well at 
the symbolic level. The fundamental question regarding PTC 
and language is whether the effects attributable to the underly- 
ing dynamical system are as trivial and incidental as switch 
bouncing, or are instead profound, influencing the very struc- 
ture of our linguistic facility. If the latter is the case, those who 
follow approach (iii) will be forced to produce bizarre, contorted 
rules in order to give a symbolic account of performance phe- 
nomena that PTC can explain quite naturally. Due to the limited 
scope of current connectionist models, there is not yet any 
convincing evidence that this will in fact happen. 

Even if the eliminative hypothesis is correct, why should we 
rely on relaxation as the dominant metaphor for subsymbolic 
computation? Simple dynamical systems are attractive because 
they are mathematically tractable, but if connectionists really 
expect to unravel language, the jewel of cognition, they had best 
give up the idea of doing it with either statistical mechanics or 
heteroassociators. This rules out virtually all distributed con- 
nectionist models to date, for example, Rumelhart and Mc- 
Clelland (1986b); McClelland and Kawamoto (1986); Sejnowski 
and Rosenberg (1987); and Allen (1987). As any defender of the 
symbolic-level paradigm would argue, connectionist models 
with persistent internal state (Jordan 1986; McClelland, person- 
al communication), modular structure (Derthick 1987a; 1987b; 
Touretzky & Geva 1987), and built-in mechanisms for complex 
operations such as variable binding (Touretzky & Hinton 1985; 
Dolan & Dyer 1987) stand a better chance of success. 

Connectionists have been exploiting tabula rasa learning and 
simple physics analogies like the proverbial drunk searching for 
his keys under a lamppost: because that’s where the light 
happens to be. There is also plenty of light under the formal 
symbolic lamppost favored by traditional cognitive scientists. 
Perhaps the keys are lying in the shadows. 
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The essential opacity of modular systems: 
Why even connectionism cannot give 
complete formal accounts of cognition 

Marten J. den Uyi 
Vakgroep Psychonomie, University of Amsterdam, 1018 XA Amsterdam, 

Netherlands 

There can be no doubt that Smolensky has done an excellent job 
at unravelling some of the conceptual knots that connect the 
symbolic and subsymbolic paradigms in cognitive science. I find 
myself in close agreement with much of what Smolensky has to 
say about the promises connectionism holds for deepening our 
understanding of the human mind. Yet there is one issue where 
I strongly disagree with the views espoused by Smolensky. 

Let me begin my argument with the observation that cog- 
nitive systems that perform complex tasks tend to adopt a 
modular architecture; the more complex the tasks and the wider 
the range, the more inevitable the assumption of modularity 
appears to become. Modular information processing is a well- 
known concept in theories of computation and it has recently 
come to play an important role in cognitive theories due to the 
work of Fodor (1983; see also multiple book review, BBS 8(1) . 
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1985). We might accordingly expect connectionist models also 
to adopt modular architectures. A large majority of the work in 
connectionist modelling is in fact concerned with connectionist 
modules, that is, with small, specialized, and relatively encap- 
sulated parts of some hypothetical larger processing structure. 
Typically this encompassing structure is represented only by 
way of some input/output and bookkeeping routines that feed 
and control the connectionist module. 

Modular architectures present some complications for con- 
nectionist theories and it seems that Smolensky systematically 
underrates the importance of these problems. I believe that 
because of this neglect a confusion of levels shows throughout 
his exposition. The confusion is not between levels of descrip- 
tion, which Smolensky goes at great length to disentangle, but 
between levels of aggregation. The point is that at various places 
Smolensky appears to assume that the characteristics of a single 
connectionist module may be transplanted unmodified to an 
extensive processing structure consisting of many intricately 
interrelated modules. For example, in his Table 1 (sect. 4), 
Smolensky presents some relations between neural and sub- 
symbolic architectures. It strikes me that many of the discrepan- 
cies Smolensky observes — e.g. “uniformly dense connections,” 
“simple topology of distal projections between node pools” — 
have their source mainly in an inappropriate comparison be- 
tween a single, structurally homogeneous, connectionist mod- 
ule and an extensive neuronal structure that quite likely sup- 
ports an intricately modular processing structure. 

If we take the human cognitive system to be a huge processing 
structure consisting of many interrelated connectionist mod- 
ules, it follows that we may distinguish two different domains for 
connectionist theorizing: In one domain the primary concern is 
with the development of models for within-module processing, 
that is, with models that optimally perform the satisfaction of 
“soft constraints”; the second domain is primarily concerned 
with the development of theories of the modular structure of 
connectionist models, that is, with analyzing forms of interac- 
tion between connectionist modules. Obviously, this distinction 
can only be drawn very roughly at present, since there exist 
many interdependencies between the two sets of problems. (It 
may be noted that the distinction parallels in part, and only in 
part, the distinction between “distributed” and “local” connec- 
tionist theories.) It would seem that Smolensky’s characteriza- 
tion of connectionist theorizing — e.g. the predominant role it 
assigns to continuous mathematics — holds nicely for theories of 
within-module processing, which may indeed be the domain of 
connectionism proper. 

The situation is much less clear when we consider the the- 
oretical domain of between-module interactions. It would seem 
that there are cases where the interactions between modules 
can be adequately described by the same kinds of differential 
equations as used in analyzing within-module processing. Prob- 
ably, however, this will only work for “modeling simple aspects 
of cognition-like relative times for naming words in various 
contexts, or the relative probabilities of perceiving letters in 
various contexts” (Smolensky, sect. 2.3., para. 8). 

Before we turn to more interesting cases of modular interac- 
tions, I will attempt a more specific interpretation of the general 
notion of a connectionist module. In the context of Smolensky’s 
harmony theory (Smolensky 1984a; 1984b) it seems most natural 
to identify a module with a subset of units that cooperate 
simultaneously in achieving a “best fit set of inferences” (sect. 
9.) — a highest harmony completion — over a part of a larger 
network. It is further implied that the process of “simulated 
annealing’ is spatially bounded by a harmony module. It follows 
naturally that a module is closed or “opaque,” that is, not 
passing activation to other modules, as long as it is in a state of 
“high computational temperature,” when its internal activation 
pattern is highly erratic. 

The discontinuities in activation passing that result naturally 
from modular structures are not in themselves insurmountable 
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obstacles for continuous analysis. However, a new level of 
complexity is introduced, where the interactions between mod- 
ules take the form of passing not one-dimensional quantities of 
activation but discrete patterns of activity between modules. 
Continuous mathematical formalisms lose their appeal quite 
drastically when interactions between modules involve interac- 
tions between complex patterns of activity (cf. Smolensky, sect. 
2.3, 8b). 

Examples of cognitive tasks where these forms of inter- 
modular interaction seem to be required in order to arrive at 
adequate connectionist models are ubiquitous. The most con- 
spicuous case is “conscious rule interpretation.” Touretzky’s 
“BolzCon” n:«-del, which takes some important first steps to- 
ward implementing this human capability in a subsymbolic 
model (Touretzky 1986), is a highly modular system, using more 
than its share of patterned intermodular interactions. Another 
example is qualitative judgment, the striking capability of the 
human mind for fast, global, evaluative judgments. I have 
argued elsewhere (den Uy] 1986) that this capability can be best 
modeled in a connectionist system by assuming a specific modu- 
lar architecture involving patterned interactions between stim- 
ulus and resonance patterns. 

Why, then, should we reject the position that “the complete 
formal account of cognition .. . lies at the subconceptual 
level”? If my account of modularity in connectionist systems is 
basically correct, then the connectionist proper may still hope to 
devise “complete and formal” accounts of isolated connectionist 
modules. However, cognition is an attribute that may charac- 
terize systems as a whole, not single modules. The connectionist 
determined to study the performance of complete modular 
systems rust accept that many of the most interesting behaviors 
cannot be adequately captured by mathematical formalisms. 

Has the case been made against the 
ecumenical view of connectionism? 

Robert Van Gulick 
Department of Philosophy, Syracuse University, Syracuse, N.Y. 13210 

Smolensky explicitly rejects any blandly ecumenical views 
about the relation between connectionism and traditional ap- 
proaches to the symbolic modeling of cognition. In particular, 
he rejects the suggestion that connectionist systems fit within 
the standard framework as models of lower-level cognitive 
processes and as implementations of more conventional AI 
programs. Instead, he believes that connectionism offers an 
alternative symbolic model of higher-level cognitive processes, 
one that conflicts with the traditional approach. He asserts that 
the symbolic and subsymbolic paradigms for modeling cognition 
are strictly incompatible; they involve mutually inconsistent 
commitments. 

Of course no one favors bland ecumenicism. We all enjoy a 
good intellectual fight, and a conflict of competing paradigms 
will probably produce more progress than would a harmonious 
accommodation that blurs the differences among diverse ap- 
proaches. However, I find what Smolensky has to say about the 
incompatibility of the two paradigms less than convincing. 
Moreover, at points, especially in his concluding section, he 
seems to express decidedly ecumenical sentiments himself, 
despite his earlier claims. 

The case for the incompatibility of the two paradigms is made 
most directly in Section 2.4., though even there it is qualified to 
some degree. Smolensky distinguishes between intuitive cog- 
nitive processes and those which involve conscious rule applica- 
tion. It is only with respect to the former that he offers an 
argument for strict incompatibility. He wishes to reject princi- 
ple (10), which states that valid connectionist models are merely 
implementations of symbolic programs. His reason is that (10) 

contradicts (8c), the subconceptual level hypothesis, which he 
takes to be a key element of the subsymbolic paradigm. The two 
principles, as formulated, are indeed strictly inconsistent. How- 
ever, the conflict concerns only the level at which exact, com- 
plete, and precise formal explanations of behavior are possible. 
Principle (8c) asserts that such descriptions of the intuitive 
processor will be possible only at the subconceptual level; (10) 
asserts that there are such descriptions at the conceptual level. 
All the work in generating a conflict between the two is being 
done by the demand for an exact, complete, and precise formal 
description of the intuitive processor. 

But there are several problems with that demand. First, it is 
not at all clear just what is being demanded. How are “exact,” 
“complete,” and “precise” to be understood? Smolensky does 
not say. Second, and more important, in so far as it is clear what 
is meant by these terms, it is far from obvious that we should 
expect an exact, complete, and precise formal description to 
exist at any level of the intuitive processor. Rather, one might 
expect all such formal models to be at best approximately 
instantiated by the actual neural hardware. However, if one 
drops the demand for precise and complete formal description, 
the strict contradiction between the two paradigms disappears. 
There is no reason why the subsymbolic connectionist model, 
which is approximately instantiated by the neural structure at 
some level of description, might not be an implementation of a 
symbolic model, which is instantiated at a higher level of 
description. Indeed, Smolensky seems to accept this possibility 
with respect to those cognitive processes that involve conscious 
rule application. And he allows that even with respect to intu- 
itive processors, conceptual level descriptions will be crudely 
approximated by the subsymbolic models he prefers. 

I suspect that the important question is not, “At what level are 
complete precise formal descriptions possible?” but rather, “At 
what level will we find powerful insightful generalizations that 
help us understand the basis of cognition?” The questions are 
distinct, since interesting insightful generalizations about the 
formal nature of cognition need not involve formal models that 
are complete, exact, and precise. Smolensky uses the relation 
between the macroscopic description of a gas and its underlying 
microstructure to illustrate his view of the relation between 
symbolic and subsymbolic modeis. But the example might have 
a moral quite other than the one he intends. Though the 
regularities describing the emergent properties of the gas may 
be less precise and exact than those governing the mechanical 
interactions of its microscopic constituents, they may be the 
interesting or important ones for many explanatory purposes. 
Indeed as Putnam (1975) has argued, one should expect this to 
be the case when the macroproperties and macroregularities are 
relatively invariant across substantial variations in the underly- 
ing microstructure. Conversely the microstructure, like the 
structure of subsymbolic processes, is most important when 
variations in its properties greatly affect or constrain the nature 
of macrostructural (or conceptual level) regularities. 

Thus it is probably best to embrace the nonreductionist and 
seemingly ecumenical viewpoint to which Smolensky turns in 
his concluding section. One should explore the nature of cogni- 
tion at many levels of description, recognizing that in some cases 
the interesting regularities will be at the higher levels of de- 
scription, but that in others they will be found at the subsym- 
bolic level in structures and processes that have their own 
distinctive regularities, which can be no more than very in- 
completely understood in terms of the “shadows” or “images” 
they cast on the conceptual level of description. 

One last caveat. Though there is value in emphasizing the 
diversity of competing approaches, one should not create dif- 
ferences where none really exist. For example, contrary to what 
Smolensky implies, the standard symbolic models of cognition 
make regular use of nonmonotonic reasoning (all you need is a 
commitment to a total-evidence condition) and processes which 
have a semantics other than that used to define the task domain. 
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It may be that some such features “come for free” in connec- 
tionist models, but whether free or otherwise they are certainly 
present in standard symbolic models. 

The reality of the symbolic and subsymbolic 
systems 

Andrew Woodfield and Adam Morton 
Department of Philosophy, University of Bristol, Bristol BS8 1TB, Great 

Britain 

Smolensky’s picture of how the symbolic and subsymbolic levels 
are related runs together a thesis about two systems and a claim 
about the relative explanatory capacities of two paradigms. It 
would be simpler to theorize about the relations between levels 
for which one claims ontological reality, without at the same 
time trying to locate oneself in a paradigm. 

Consider the following two-systems hypothesis: There are 
two different abstract types of system which the human brain 
can be taken to instantiate, symbolic and subsymbolic. Given a 
particular brain that instantiates both, how might the activities 
of those two system-tokens be related? 

Case (1) Division of labour. Just as the agent may play the 
piano with one hand while stirring coffee with the other, so the 
cognizer may perform symbolic operations with one part of his 
brain while doing subsymbolic computation with another part. 

Case (2) Killing two birds with one stone. Just as an agent can, 
in one arm movement, both signal a turn and wave to a friend, so 
the cognitive agent might, via one set of neural events, simul- 
taneously manipulate symbols at the conceptual level and per- 
form a subsymbolic operation. Two cognitive processes, func- 
tionally independent of one another, happen to be corealized in 
a very versatile physical substrate. 

Case (3) The “by” relation. Just as an agent may enter into a 
contract by signing his name, so a cognizer may carry out a 
symbolic process by performing subsymbolic operations. Two 
levels of cognition are both mediated by the same neural events, 
but they are not functionally isolated. The symbolic process 
emerges out of the subsymbolic, or is “level-generated” by it 
(Goldman 1970). A connectionist machine can, under certain 
conditions, simulate a von Neumann machine. Smolensky sug- 
gests, analogously, that human beings, unlike digital comput- 
ers, might be cognitively hard in virtue of being soft machines 
that have attained a high level of complexity. It is worth empha- 
sizing that if symbolic thinking is indeed an emergent, it really 
exists, just as the act of entering into a contract exists. You 
cannot be emergentist and eliminativist about hard processing. 
The position we offer as a foil to Smolensky’s is that over a 
significant range of cognitive tasks, the human brain functions as 
a symbol-manipulator by being a subsymbolic system. 

A complication is introduced by the suggestion that human 
symbolic calculation might only approximate hardness. This 
gives rise to a new thought about reduction, and an analogy. 
Smolensky suggests that “symbolic” theories may be reducible 
to “suhsymbolic” theories in roughly the same way that classical 
mechanics is reducible to quantum mechanics. This analogy 
with physics, while illuminating, captures neither the on- 
tological commitment to the two levels nor the suggestion that 
the symbolic system in humans arose historically out of a new 
arrangement of preexisting capacities. Analogies for develop- 
mental emergence are rare in physics, but plentiful in biology. 
For example, ethologists have proposed that some social be- 
haviour in animals (display, courtship rituals) evolved out of 
displacement activities produced by conflict between basic 
instincts. 

Second, the fact that theories at the symbolic level are only 
approximately true of humans would not undermine the on- 
tological commitments of the “two systems” hypothesis. The 
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brain might really instantiate a symbolic system that was type- 
identified via an idealized specification. Human performance 
usually falls short of perfection. To succumb to “as if’ locutions, 
or to say that there is basically only one system after all, is 
incompatible with the “emergence” thesis. Smolensky some- 
times appears to be tempted in this direction. To claim, howev- 
er, that the human brain instantiates nothing but a subsymbolic 
system prevents one from saying, as Smolensky wishes to do, 
that the theory of subsymbolic processing explains how the 
human brain does manage to instantiate a symbolic system. 

Third, although the subsymbolic level may explain why cer- 
tain symbolic level descriptions are true, the direction of expla- 
nation could equally well go the other way. From certain 
perspectives, explanations at the symbolic level could be more 
basic than explanations at the subsymbolic level. Consider again 
the analogy with action-theory. A child approximately succeeds 
in the act of eating jelly with a spoon, by moving his hand, his 
head, his mouth. Although the movement-description is lower- 
level than the act-description, the act-description is explana- 
torily more basic in a teleological sense, since we can explain 
why he performed that sequence of movements by reference to 
the act. Similarly, a piece of clumsy reasoning might be ex- 
plained either in terms of the goals and norms that the thinker 
was trying to satisfy, or in terms of the subsymbolic processes 
that mediated his actual performance. 
Why does Smolensky see his two “paradigms” as rivals? One 

reason, perhaps, is that he is over-reacting to an unfair, deroga- 
tory charge made by some High Church computationalists, that 
connectionist systems are “mere implementations” of systems 
whose “proper” level of description, qua cognitive, is symbolic. 
Such a charge has no sting. For one thing, there are probably 
many kinds of cognitive processes which do not use a language- 
like system of internal representation. More important, for 
processes that do require such representations, there is nothing 
“mere” about discovering that the processor in question 
emerges out of a connectionist system. To establish a convincing 

example of a case (3) relationship would be a great victory, and a 
vindication of the PDP (parallel distributed processing) ap- 
proach. We learn how the symbolic processor does its job, but 
we also gain deeper insight into what is being done, from both a 
psychological and an evolutionary perspective. 

Yet not even global success of this sort would prove that “the 
complete formal account of cognition lay at the subconceptual 
level,” for this phrase presupposes one formal account that is 
complete. There might instead be two formal descriptions, each 
being a complete account of its own system, but neither giving a 
complete account of cognition as a whole. 

Editorial Commentary 

Some senses of “level” seem relatively clear and well defined: 
the hierarchy of compiled programming languages and the 
software versus hardware levels; the function/structure dichoto- 
my; molar/molecular or macro/microlevels of description; per- 
formance/mechanism, behavior/neural substrate. All these 
seem to involve a viable higher/lower distinction. Perhaps 
conscious/unconscious processes can also be said to stand in 
some sort of superordinate/subordinate relation, although this 
begins to impinge on unsettled aspects of the mind/body prob- 
lem. But what about “symbolic/subsymbolic”? Has an up/down 
relationship that is informatively called “levels” really been 
picked out here? On the face of it, symbolic and nonsymbolic 
appear to be the only two relevant options — at least if one is 
committed to an explicit formal definition of “symbolic” such as 
Fodor's [BBS 3(1)] or Pylyshyn’s [BBS 3(1)] — but this is just 
parasitic on the software/hardware distinction, with no obvious 
intermediaries. To attempt to flesh it out by defining yet another 
up/down relation — “conceptual/subconceptual” — seems either 



to be parasitic in turn on the conscious/unconscious dichotomy 
or to declare the existence of an intermediate level by fiat. 
Similar remarks can be made about the subsymbolic/neural 
relation. Have different levels, or different senses of level, been 
conflated, or perhaps invented, in Smolensky’s treatment of 
connectionism? For if we have no prior interpretative commit- 
ments, connectionism simply appears to be a simulated or 
implemented family of statistical algorithms for adjusting con- 
nection strengths in an interconnected causal network whose 
performance capacity and limits remain to be explored. 

Author's Response 

Putting together connectionism — again 

Paul Smolensky 
Department of Computer Science and Institute of Cognitive Science, 
University of Colorado, Boulder, Colo. 80309-0430 

Table 1. The format of this response. The commentaries 
discussed in each category (sometimes in footnotes) are listed 

in order of appearance 

1. Levels of analysis 
1.1. A framework for discussion. 

Touretzky; Hanson; Antony & Levine; Dietrich & 

Fields; Stich; Cleland; Van Gulick; Woodfield & Mor- 
ton; Prince & Pinker; Rey; Lloyd; Chandrasekaran, 

Goel & Allemang 
. Commentaries compatible with PTC. 
Hofstadter; Dellarosa; Lindsay; Golden; Rueckl 

. Misunderstandings of the PTC position. 
EDITORIAL COMMENTARY; Quarton; Lakoff; Dietrich & 

Fields; Touretzky; Rey; Schneider 
. Arguments against PTC’s relation to the symbolic 
approach. 
Dyer; Touretzky; Chandrasekaran, Goel & Allemang; 

Schneider; Lloyd; Stich; Woodfield & Morton; Antony 

& Levine 

1.5. The neural level. 

Lloyd; Mortensen; Rueckl; Stone; Bechtel; den Uyl 

. Treatment of connectionist models 
Touretzky; den Uyl; Schneider; Golden; Stone; Lakoff; 

Mortensen; Belew; Freeman; Dreyfus‘& Dreyfus; Lycan 

. Treatment of symbolic models 
Chandrasekaran, Goel & Allemang; Lycan; Prince & 
Pinker; Rey; Van Gulick; Lindsay; Nelson 

. Adequacy of connectionism in practice 
Prince & Pinker; Dreyfus & Dreyfus; Freidin; Shepard; 
Chandrasekaran, Goel & Allemang; Rey; Lehnert; Hunt- 

er; McCarthy 

1. Levels of analysis 

The major issue discussed in the target article was the 
levels of analysis used in various approaches to cognitive 
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science. Several of the commentaries misconstrued the 
PTC (proper treatment of connectionism) position on this 
issue, either explicitly or implicitly. The target article 
focused on what the PTC account is; I will now devote 
more attention to what it is not, providing a better 
framework in which to respond to the commentaries. 

1.1. A framework for discussion. Suppose we are given 
two computational accounts at different levels; call the 
lower- or “micro”-level description p, and the higher- or 
“macro -level description M. » might be an assembly- 
language program, or the differential equations describ- 
ing the circuits in a von Neumann computer, or the 
differential equations describing activation passing and 
connection strength modification in a connectionist net- 
work. M might be a Pascal program or an OPS-5 produc- 
tion system for solving arithmetic problems. The ques- 
tion is: What possible relations might hold between p and 
M? (The following discussion expands on that of Pinker & 
Prince 1988). 

The first possibility is the most straightforward: is an 
implementation of M. The notion of implementation is 
provided primarily by the von Neumann computer; 
throughout this discussion I will take “implementation” 
to mean exactly what it means in that context.! For my 
own purposes, the crucial aspect of the implementation 
relation is this. Suppose we have a physical system S 
which at some level of description L,, is performing 
exactly the computation p; that is, if we write down the 
laws governing the dynamics and interactions of those 
aspects of the system state that are characteristic of level 
L,,, we find these processes to be exactly described by w. 
If p is an implementation of M, we are guaranteed the 
following: The states of this same system S have charac- 
teristics at a higher level L,, which evolve and interact 
exactly according to M: These characteristics define a 
description of S at the higher level L,, for which M is a 
complete, formal, and precise account of the system’s 
computation. 

If » implements M, then this constitutes the strongest 
possible sense in which » and M could both be valid 
descriptions of the same system S. If we take p to be a 
connectionist account and M a symbolic account, then 
assuming that p is an implementation of M is the view of 
connectionism I will call implementationalist. The imple- 
mentationalist view is rejected by PTC. This rejection is 
stated in (8c); the wording of (8c) is designed precisely to 
reflect the characterization of the implementation rela- 
tion given in the preceding paragraph. 

If » is not an implementation of M, another obvious 
possible relation between yw and M is that there is no 
systematic relation between them. If S is a system that is 
described at level L,, by », then there is no description at 
any level of S that bears any significant similarity to M, 
except possibly for isolated accidental coincidences. In 
this case, M can have no role to play in explaining the 
behavior of S.2 

If » is a connectionist account and M is a symbolic 
account, this relation corresponds to the eliminativist 
position: Connectionist accounts eliminate symbolic ones 
from cognitive science. Like the implementationalist 
position, the eliminativist position is also rejected by 
PTC. 

Table 2 presents the implementationalist and elim- 
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Table 2. A spectrum of positions on connectionism’s relation to the symbolic approach 

Eliminativist 

Neural Connectionist 

Position 

Limitivist 

(PTC) Revisionist Implementationalist 

Conceptual-level folklore folklore 
laws/symbolic 
processes 

Subconceptual-level 
laws/connection- 
ist processes 

exactly correct for 
entire cognitive 

system 

nonexistent 

inativist positions, along with a number of other relevant 
positions on the relation between connectionist and sym- 
bolic accounts. All positions in Table 2 assume some 
degree of validity of the connectionist approach; they 
differ in their assessment of the validity of the symbolic 
approach and the relation between the two approaches. 
As Table 2 indicates, and as I will shortly discuss, PTC 
adopts a view in some sense intermediate between the 
far-left eliminativist and far-right implementationalist 
views. The intermediacy of the PTC position allows us to 
understand an interesting phenomenon that occurred in 
the commentaries. Commentators leaning toward one or 
the other of the extreme views correctly saw in PTC a 
rejection of their view. Their response was to conclude 
that PTC embraced the other extreme, and to direct at 
PTC their favorite attacks on the opposite extreme. Thus 
we see why Touretzky — whose connectionist models 
(e.g., Touretzky 1986; Touretzky & Hinton 1985) proba- 
bly come closest to realizing the implementationalist 
strategy — identifies the contribution of the target article 
as “defin[ing] the eliminative stance” at the same time 
that Hanson calls PTC a “ ‘strong implementational’ view 
of connectionism.” Implicitly, the logic in these commen- 
taries stems from the following assumption: 

(EF) The Extremist Fallacy: There exist only two viable 
views on the connectionist/symbolic relation: elim- 
inativism and implementationalism. Any approach that 
clearly rejects one view must either embrace the other 
or be incoherent. 

Some commentators, seeing correctly that PTC rejects 
both extreme positions, followed (EF) to the conclusion 
that PTC is incoherent (e.g., Antony & Levine and 
Dietrich & Fields). 

It therefore becomes crucial to establish that (EF) is 
indeed a fallacy; that there is a coherent perspective that 
rejects both extremes. The target article is, of course, 
intended to argue for just this conclusion. The article 
summarizes a program of research carried out in the 
intermediate perspective to illustrate that the framework 
is viable, that it can lead to interesting research, and that 
it has the potential to account for more aspects of cogni- 
tion than either extreme view can handle separately. 

Another argument is more hinted at than formally 
presented: An argument by analogy with physics, in 
which the intermediate position of PTC is likened to the 
relation between the microphysics of the quantum theory 
of matter and the macrophysics of Newtonian mechanics. 

60 BEHAVIORAL AND BRAIN SCIENCES (1988) 11:1 

approximately 
correct 

exactly correct for 
entire cognitive 

system 

exactly correct, af- 

ter revision 

exactly correct (for 
connectionist 

part of cognitive 

exactly correct 

exactly correct (but 
irrelevant for cog- 
nitive —_architec- 

system) ture) 

Note that the point of the analogy is to show by illustration 
that an intermediate view like that of PTC cannot be 
simply dismissed as intrinsically incoherent, as in (EF). 

The micro/macrophysics analogy was not construed 
uniformly by the commentators in the way it was 
intended, so let me expand upon it here. Some readers 
may have taken the comparison to Newtonian physics as 
deprecatory — quite the opposite of the intended read- 
ing. Newtonian mechanics was chosen as a case where a 
macrotheory is scientifically rock-solid, and explanatorily 
essential, despite the fact that it is known to be not 
literally instantiated in the world, according to the cur- 
rent best theory, the microtheory. As Stich points out, 
the fundamental elements in the ontology presumed by 
the macrophysics cannot literally exist according to the 
ontology of microphysics (rigid bodies, deterministic val- 
ues for observables, Galilean invariance of physical 
laws). In a strictly literal sense, if the microtheory is 
right, the macrotheory is wrong,° it is in this quite 
nontrivial sense that I describe the micro- and mac- 
rotheories as “incompatible” (contrary to Cleland, 
Dietrich & Fields, and Van Gulick). It does not however 
follow that the macrotheory is explanatorily irrelevant: 
In the world of real explanations, Newtonian explana- 
tions are at least as important as quantum ones (within 
their proper domain). The position on explanation that 
PTC relies on goes something like this: 

(AE) The Principle of Approximate Explanation: 
Suppose it is a logical consequence of a microtheory 
that, within a certain range of circumstances, C, laws 
of a macrotheory are valid to a certain degree of 
approximation. Then the microtheory licenses ap- 
proximate explanations via the macrotheory for phe- 
nomena occurring in C. In very special cases, these 
phenomena may admit more exact explanations that 
rest directly on the laws of the microtheory (without 
invoking the macrotheory), but this is not to be ex- 
pected generically: For most phenomena in C, the 
only avaiiable explanation will be the (approximate) 
one provided by the macrotheory.* 
This principle illustrates a third relation that can exist 

between a microaccount » and a macroaccount M: M 
approximately describes the higher level behavior of S, 
not accidentally but because there are systematic, ex- 
planatorily relevant relationships between the computa- 
tions performed by p and M. That the relationships 
between p and M are “systematic” manifests itself in 



principle (AE) through the proof (or less rigorous logical 
argument) that, given that the laws yp hold at the micro- 
level, it follows that the laws of M hold at the macrolevei. 
Let us call this relationship between y and M refinement: 
p is a refinement of M. 

Refinement, not implementation, is the relation be- 
tween micro- and macrophysics. Figuratively speaking, 
“programs” written in Newtonian physics that depend on 
strict determinism or absolute simultaneity will not “run” 
correctly in a world of quantal uncertainties and Ein- 
steinian relativities. If quantum theory were an imple- 
mentation of Newtonian mechanics, it would be guaran- 
teed that any phenomenon describable in the Newtonian 
vocabulary would be governed exactly by Newtonian 
laws; quantum theory would be needed only for micro- 
events not describable at the higher level of Newtonian 
theory. It is just such a guarantee that ensures that a 
program written in COMMON LIsP will provide an exact 
higher level description of any computer running that 
program on top of a genuine implementation of COMMON 
LISP. 

It is useful to be a bit more concrete about one sense in 
which the macrotheory approximates the microtheory. In 
physics, the passage from the microtheory to the mac- 
rotheory is a certain limit in which various parameters of 
the system being described approach extreme values. 
(For example, Newtonian mechanics correspond to a 
limit of relativistic quantum theory in which, loosely 
speaking, masses of bodies approach infinity and speeds 
approach zero.) Thus, the mathematical analysis of the 
emergence of the macrotheory from the microtheory 
involves taking limits in which certain idealizations be- 
come valid. In the cognitive case, there are many limits 
involved in the passage from subsymbolic models to 
symbolic models. Among these limits are: The number of 
connectionist units or the strength of connection ap- 
proaches infinity (allowing “soft” properties to become 
“hard,” and allowing memory capacity limits to be ide- 
alized away for “competence” theory), the relaxation or 
learning time approaches infinity (allowing, e.g., stoch- 
astic inference or learning to converge to theoretically 
known limits), and the overlap (inner product) of vectors 
stored in memory approaches zero (orthogonality: elim- 
inating interference of items in memory). 

Since the formal relationship between the micro- and 
macrolevels presumed here is one of convergence in the 
limit, the PTC position in Table 2 has been called “lim- 
itivist.” This name is also appropriate in that the micro- 
theory explicitly limits the applicability of the macrotheo- 
ry to certain circumstances C, and specifies the limits of 
its accuracy in C. 

Having discussed the main points of Table 2, let us 
consider each of the positions outlined in the table, from 
the extreme left to the extreme right. 

There are two kinds of eliminitivists: The furthest left 
position maintains that the science of cognition will re- 
quire accounts at the neural level, and that higher levels, 
whether they be those of the symbolic or subsymbolic 
paradigm, can furnish no more than folklore. The only 
scientifically valid cognitive models are real neural mod- 
els. Slightly less to the left is the position that connec- 
tionist models offer scientifically valid accounts, even if 
they are at some level higher than the neural level, but 
accounts at levels higher than that of connectionist nodes 
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and links, including symbolic models, have no scientific 
standing. 

Left of center is the position taken by PTC, that 
accounts at the neural, subconceptual, and conceptual 
levels can all provide scientific explanations. The concep- 
tual level offers explanations that are scientifically valid 
provided that it is taken into consideration that they are 
approximate and restricted; the range of cognitive phe- 
nomena modeled by the subconceptual accounts, and the 
exactness of those models, is much greater. In this view, 
symbolic methods cannot provide complete, formal, and 
precise accounts of intuitive processing (8c), but this 
leaves a number of important roles for symbolic accounts 
(briefly mentioned in the target article following 8c): 
a) describing consciously mediated (nonintuitive) pro- 
cesses — including many of the phenomena so important 
to philosophers, such as conscious reasoning; b) describ- 
ing isolated aspects (i.e., not complete accounts) of per- 
formance; c) giving general (as opposed to detailed and 
formal) ways of understanding and thinking about cog- 
nitive processes; d) describing intuitive competences: 
abstractions away from performance (i.e., not precise), 
e.g., in language processing (contrary to Rey, the validity 
of competence theories is consistent with PTC). 

Right of center is the revisionist position, which sees as 
a primary function of connectionist theory the revising of 
symbolic theory; after such revision, this view has it, 
symbolic theory will provide a complete, formal, and 
precise account of cognition at the macrolevel. A favorite 
way to imagine the revisionist scenario playing out is to 
modify symbolic theory by relegating certain processes to 
connectionist networks: e.g. perception, memory, pro- 
duction matching, and other “low level” operations. The 
image that emerges is that the mind is a symbolic comput- 
ing engine with handy connectionist peripherals to which 
it can farm out certain low-level chores that connectionist 
nets happen to have a talent for. Since, as we all know, the 
left half of the brain does hard, rational symbol-like 
processing while the right half does soft, squishy, con- 
nectionist-like processing,® this version of the revisionist 
story sees the mind as a house divided, right and left 
working side by side despite their profound differences. 
Daniel Andler (personal communication) and I call this 
arrangement by its French name, cohabitation. (Wood- 
field & Morton call this “division of labor.”) 

A subtler, but vaguer, revisionist view anticipates a 
revision of the way the basic machinery of symbolic 
computation is used in cognitive models, based on the 
way symbolic operations are actually realized in the 
connectionist substrate (Pinker & Prince 1988). I am not 
aware of any suggestions for how this might be carried out 
in practice. 
One difference between a PTC and revisionist view 

can be illustrated through the commentary of Lloyd: he 
clearly places priority on higher, conceptual-level ac- 
counts of cognition; he resists PTC’s move to give the- 
oretical parity (or even priority) to the lower, subconcep- 
tual level; and he looks to connectionism primarily as a 
way of developing new and better formal accounts at the 
conceptual level. Viewed through PTC’s Newto- 
nian/quantum analogy, Lloyd’s view becomes: “What 
we really want out of physics is the study of macroscopic, 
everyday, rigid bodies; quantum mechanics should be 
used primzrily to provide us with better theories of such 
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bodies, and not to shift our attention to lower levels that 
are not properly the study of physics.” 

The final, far-right view is the implementationalist 
view already discussed. 

The target article stated that PTC rejects “blandly 
ecumenical” views; this term was intended to cover both 
the cohabitation version of revisionism and implementa- 
tionalism. The sense in which these views are bland is 
that they involve no reconstruction of the core of the 
cognitive architecture presumed by the symbolic ap- 
proach; they simply involve realizing low-level opera- 
tions in connectionist terms. In the cohabitation ap- 
proach, selected low-level processes in the architecture 
get done with connectionist networks, giving a higher 
level performance that is potentially different from the 
symbolic components they replace (e.g., the new memo- 
ry is content-addressable whereas the old was not). In the 
implementationalist approach, connectionist networks 
perform the primitive operations needed to support all of 
symbol processing but they do it in such a way that, 
viewed from @he higher level, the computations are the 
same as they were before. 

By contrast, the PTC approach requires a complete 
reconstruction of the cognitive architecture. It does not 
recycle the symbolic core, adding connectionist pe- 
ripherals or providing connectionist implementations of 
all the Lisp primitives. PTC is “incompatible” with the 
symbolic approach because it does involve reconstructing 
the cognitive architecture. PTC is self-consciously ec- 
umenical — but not blandly so. 

To appreciate this point, it is helpful to draw out the 
methodological import of the distinction between the 
PTC and blandly ecumenical views. Consider a core 
cognitive function, say, language comprehension. Given 
the three views, cohabitation, implementational, and 
PTC, what is the job of the connectionist researcher? A 
researcher of the cohabitation school takes a symbolic 
program for language comprehension and asks, “How can 
I rewrite this program to make use of a connectionist 
memory and connectionist best-match routine?” An im- 
plementationalist asks, “What are the primitive symbolic 
operations into which this program compiles, and how 
can I build connectionist nets to implement them?” The 
PTC approach spawns several questions: “Which aspects 
of human performance are being captured by this pro- 
gram, and which are being missed? What are the com- 
putational abstractions being used in the program that 
allow it to capture what it captures? What are natural 
ways of instantiating those abstractions in connectionist 
computation? Are there ways to use connectionist com- 
putation to model the aspects of human performance that 
the symbolic program is missing?” 

These differences between the methodological im- 
plications of the implementationalist and PTC views are 
illustrated in Figure 1. At the top level are information- 
processing abstractions such as memory, constituent 
structures, attention, and so forth. At the next level are 
the particular formal instantiations of these abstractions 
that appear in symbolic cognitive science. Below these on 
the right branch are connectionist implementations of 
these symbolic computational elements. This is the im- 
plementationalist branch. On the left branch, the high- 
level abstractions have been instantiated directly in their 
natural PTC-connectionist form, without passing through 
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computational abstractions 
(memory, constituent structures, attention) 

symbolic instantiation of abstractions 
(location-addressed memory, trees, in-focus list) 

approximate higher 
level description 

direct connectionist instantiation of abstractions 
(content-addressed pattern memory; 

fully distributed constituent structures; 
activation enhancement) 

connectionist implementation of symbolic primitives 
(connectionist car, cdr; 
connectionist pointers; 

connectionist lists and serial scanning) 

Figure |. The methodological implications of limitavist (left 
branch) vs. implementationalist (right branch) views of con- 
nectionism. 

the symbolic formalism. But because these PTC-connec- 
tionist instantiations are reifying the same kinds of ab- 
stractions, and because the symbolic formalism does 
capture important aspects of human cognition, there is a 
relation between the connectionist instantiations on the 
left branch and the symbolic instantiations on the right 
branch: The former are a refinement of the latter, i.e., the 
symbolic formalism is an approximate higher level de- 
scription of the PTC-connectionist formalism (as opposed 
to an exact higher level description of the implementa- 
tionalist-connectionist formalism on the right). Again, the 
main point is this: The right, implementationalist, branch 
preserves the symbolic cognitive architecture, whereas 
the left, PTC branch requires a reconstruction of the 
cognitive architecture in which the basic computational 
abstractions acquire new, nonequivalent, instantiations. 
This view of the relation between connectionism and 
cognitive architecture has much in common with that of 
Fodor and Pylyshyn (1988), but our assessments differ. 

As the last two paragraphs show, there are important 
methodological implications that depend on whether 
connectionist models literally implement symbolic mod- 
els, or whether the two kinds of models merely instanti- 
ate common underlying principles. Thus it is important to 
ask (with Van Gulick), “at what level will we find powerful 
insightful cognitive generalizations’ — but it is also impor- 
tant to ask (contrary to Van Gulick) “at what level com- 
plete precise formal cognitive descriptions are to be 
found,” for it is this question that determines which 
branch of Figure 1 we are to follow. 

Chandrasekaran, Goel & Allemang are right to em- 
phasize the importance of “information processing ab- 
stractions”; these are the elements at the top level of 
Figure 1. But it is also necessary to emphasize the 
importance of the particular shape these abstractions take 
when they are formalized in a particular framework. 

1.2. Commentaries compatible with PTC. Having placed 
PTC explicitly in the context of alternative views of 
connectionism, I now proceed to direct replies to com- 
mentary, starting with those consistent with the PTC 
view. , 

Hofstadter’s commentary illustrates his view of con-. 
ceptual-level interactions, a view that seems to cry out for 
instantiation of concepts as something computationally: 
akin to patterns of activity: patterns that take context 
dependent forms, overlap with a rich topology, and 
support subtle conceptual-level interactions that emerge 
from simpler interactions between the elements of the 



rich internal structure of these concepts. The fluid con- 
ceptual interactions of common sense demanded by 
Hofstadter are, on the PTC account, built into the very 
fabric of the architecture: They are not add-ons to an 
otherwise brittle system. Hofstadter’s view is not only 
very close to PTC, it is one of PTC’s chief sources. Many 
of the elements of PTC have rather direct counterparts in 
the writings of Hofstadter: subsymbols (Hofstadter 1985, 
p. 662), the subconceptual-level hypothesis (Hofstadter 
1985), the relation between conceptual, subconceptual, 
and neural models (Hofstadter 1979, p. 569-73), symbols 
and context dependence (Hofstadter 1979, 349-50), and 
even computational temperature (Hofstadter 1983). 
While Hofstadter has articulated these principles, and 
argued extensively for them, he has incorporated them 
into research limited to the conceptual level; the meth- 
odological conclusion that PTC draws is, of course, quite 
different. 

Dellarosa’s commentary raises the issue of whether 
connectionist processing should be viewed as “associa- 
tion” or “inference.” “Associationism” is also raised — but 
as an ominous accusation — by Lindsay. The view favored 
in the target article, and pushed even further by Golden, 
is that the basic processing in connectionist networks is 
statistical inference, which sits somewhere intermediate 
between the notions of “pure association” and logical 
inference. Since “pure association” is an undefined, in- 
formal notion, it is difficult to say in which respects the 
processes underlying the most powerful connectionist 
models go beyond pure association. But the kind of 
statistical inference underlying the harmony model of 
circuit reasoning, discussed in Section 9.2 of the target 
article, seems more powerful than “mere” association in 
its ability, in the appropriate limit, to give rise to a 
competence that is correctly characterized through log- 
ical inference. It is probably best to say that just as 
predicate calculus is Aristotle's notion of inference 
dressed up and gone to college, so the statisticai inference 
of connectionist networks is Humean association with a 
Master's degree. 

Rueckl makes the important point that softened con- 
ceptual-level formalisms such as fuzzy logic can be used to 
formalize subsymbolic models at the conceptual level, 
but they will in general fail because they do not capture 
enough of the internal structure of concepts to be able to 
account for the causal interactions of those concepts. I 
might add a technical note: Rueckl is right in stating that 
it’s not possible to predict much if all that’s known is the 
degree to which a pattern is present, but much more can 
be predicted if instead what’s known is the degree to 
which a pattern overlaps a complete set of patterns. This 
is in fact the basis of the conceptual-level analysis of 
Smolensky (1986b), which is summarized in Section 9.3 of 
the target article. 

Most of Dyer’s comments seem to be consistent with 
the PTC position, and I have nothing substantial to 
dispute in, or add to, his observations. 

1.3. Misunderstandings of the PTC position. The frame- 
work presented above allows us to clear up confusions 
about the PTC position present in a number of commen- 
taries. 

Both the EDITORIAL COMMENTARY and Quartoni s take 
my use of “symbolic” and “subsymbolic” to refer to 
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levels. In fact, these terms refer to paradigms for cog- 
nitive modeling, not levels. The editor is right to question 
whether “subsymbolic” refers to a lower level than “sym- 
bolic”: It does not. The symbolic and subsymbolic para- 
digm, as defined in the target article, are approaches to 
cognitive modeling that use, respectively, symbolic and 
subsymbolic models, each of which can be analyzed at 
various levels of analysis. As Table 2 (target article) 
illustrates, the symbolic/subsymbolic distinction is 
orthogonal to the distinction between the conceptual and 
subconceptual level. These are semantic levels: They 
refer to mappings between formal models and what they 
represent. On the side of what is represented, the con- 
ceptual level is populated by consciously accessible con- 
cepts, whereas the subconceptual level is comprised of 
fine-grained entities beneath the level of conscious con- 
cepts. For connectionist models the conceptual level 
consists of patterns of activity over many units and their 
interactions; the subconceptual level consists of indi- 
vidual units and their interconnections. For symbolic 
models, the conceptual level consists of symbols and the 
operations that manipulate them, and lower levels (no 
one of which has the distinction of being singled out as 
“the subconceptual level”) consist of the finer grained 
operations on which symbol manipulation is built. 

In other words, the level distinctions involve levels of 
aggregation, what the EDITORIAL COMMENTARY Calls the 
“molar/molecular or macro/microlevels of description,” 
just as in the case of macro/microphysics, the basic 
analogy that was provided for understanding the 
intended sense of “levels.” (Lakoff further distinguishes 
this use of “levels” from a related but different usage in 
linguistics. ) 

As in Table 2 (target article), Quarton’s two-dimension- 
al array of models illustrates the orthogonality of levels of 
description and models being described. His commen- 
tary is quite helpful, and usefully distinguishes “simula- 
tion relevant” and “simulation irrelevant” lower levels. 
Quartor unfortunately ignores, however, the crucial fact 
that different levels can be related in ways other than 
implementation; his picture handles levels in computer 
systems but cannot really accommodate the relevant 
relationship fur PTC: the sense in which macrophysics is a 
higher level description of microphysics. What is needed 
is a vertical relation other than implementation, or, if 
models related by other than implementation are to be 
separated horizontally, an analysis of horizontal relations. 

Some commentators found the thrust of the target 
article inconsistent with their interpretation of descrip- 
tive terms such as “incompatible,” “inconsistent,” and 
“blandly ecumenical.” Rather than letting their under- 
standing of the gist of the article guide them to interpreta- 
tions of these unimportant terms that would lead to an 
overall consistent reading of the article, they prefered to 
stick with some a priori favorite characterization of these 
terms and get confused by imagined inconsistency. 

For example, Dietrich & Fields seem to have grasped 
entirely the intent of PTC’s limitivist position, yet be- 
cause they did not see this position as representing 
“incompatibility” between connectionist and symbolic 
accounts, they preferred to see inconsistency. As ex- 
plained above, there is a perfectly reasonable sense in 
which Newtonian mechanics and quantum theory are 
“incompatible”; in fact, this sense of incompatibility is 
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sufficient to lead Stich to conclude that the microtheory 
can eliminate the scientific standing of the macrotheory. 

Dietrich & Fields pursue their misconstrual of “incom- 
patibility” to the conclusion that PTC must be committed 
to the lack of a consistent mapping between patterns of 
activity and concepts — for otherwise there would in 
principle be a “complete, formal, and precise” PTC 
account at the conceptual level. Here they ignore the 
word tractable in (8c). That such conceptual-level ac- 
counts exist in principle is not the issue; the question is 
whether such accounts exist in sufficiently tractable form 
to serve the scientific needs of building models, making 
predictions, and providing explanations. (Besides, that 
the pattern-of-activity-to-concept mapping is imprecise is 
exactly the content of Section 7.2.) 

Dietrich & Fields’s claim that models can be given any 
semantic interpretation at any level seems to indicate that 
they have in mind a profoundly different sense of “level” 
from that used in the target article. In claiming that one 
can interpret neurons as representing grandmothers they 
appear to be blurring the distinction between mapping a 
single neuron’s state onto a representation of grand- 
mother and mapping collective states of a population of 
neurons onto such a representation. If we replace “neu- 
ron” by “node in a subsymbolic connectionist network,” 
then this distinction is precisely that between giving a 
semantic interpretation at the subconceptual level and at 
the conceptual level. Lakoff spells this out quite clearly. 

Touretzky asserts that the PTC position on his bounc- 
ing thermostat is the eliminativist one (iv); in fact, the 
PTC position would be to develop equations correctly 
accounting for the bouncing, and to derive mathe- 
matically the result that the higher level rule is approx- 
imately satisfied. It should be possible in fact to derive the 
limits of this approximation: The amount of time after 
crossing the setpoint that “performance noise” will ob- 
scure the thermostat’s “real competence,” and conditions 
under which the competence will fail to appear at all (e.g., 
subjecting the thermostat to rapid temperature oscilla- 
tions that prevent it from equilibrating). 

As stated earlier, several implementationalist-leaning 
commentators mistook PTC for eliminativist; in addition 
to Touretzky, these include Rey (“connectionism ought 
in the end to replace . . .”) and Schneider (“. . . para- 
digm shift laying waste its predecessors’). 

Bechtel is worried about how the connectionist con- 
scious rule processor can do its job without actually being 
implemented, and thus violating (8c). But (8c) only refers 
to the intuitive processor, so this problem is a simple 
misunderstanding. Indeed Section 6 of the target article 
is devoted to implementing the conscious rule interpret- 
er in connectionist networks. 

1.4. Arguments against PTC’s relation to the symbolic 
approach. Several commentators argue for positions in 
Table 2 other than the PTC position. 

Dyer and Touretzky emphasize the importance of 
symbolic processes (e.g., variable binding) in performing 
complex information processing; the PTC view is in 
agreement: It is necessary “to extend the connectionist 
framework to naturally incorporate, without losing the 
virtues of connectionist computation, the ingredients 
essential to the power of symbolic computation” (Smol- 
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ensky 1987, p. 1). Although arguments like those of Dyer ' 
and Touretzky, emphasizing the importance of symbolic ‘ 
computation, are often viewed as arguments in favor of ' 
implementationalist or revisionist views of connec- : 
tionism, they are really arguments against the elim- 
inative view; they are therefore quite compatible with the 
PTC view. It must be realized, however, that since a PTC 
view, following the left branch of Figure 1, insists on 
reinstantiating the basic ideas behind symbolic computa- 
tion in a fully connectionist fashion and not merely 
implementing the standard instantiations of those ideas, 
we will not know for some time yet whether the PTC 
approach can adequately marshal the power behind sym- 
bolic computation. 

The commentators who seem to advocate revisionist 
positions include Chandrasekaran et al. (“Connectionist 
architectures seem to be especially good in providing 
some basic functions . . . . Symbolic cognitive theories 
can take advantage of the availability of connectionist 
realization of these functions”), Schneider (“it would be 
better to identify the weaknesses and strengths of each 
and examine hybrid architectures”), and, most explicitly, 
Lloyd. 

Stich argues for an eliminativist position, preferring to 
view symbolic theory as an analog of caloric theory rather 
than of Newtonian mechanics. The moral he wants to 
draw from his analogy is that the microtheory (kinetic 
theory) eliminated the macrotheory from science. This is 
a strange moral to draw, however: There is no more 
spectacular (and classic) example in science of a micro- 
theory that vindicated and refined — rather than elimi- 
nated — a macrotheory than that of kinetic theory (statis- 
tical mechanics) and thermodynamics. Whatever may 
have been the fate of the particular stuff called “caloric 
fluid,” the scientific standing of macrotheory in this area 
is not in doubt. It is the view that successful microtheories 
always eliminate macrotheories from science that I re- 
ferred to in the conclusion of the target article as “na- 
ive . . . eliminative reductionism, ” and Stich is right that 
the PTC view rejects the eliminative conclusion. (Wood- 
field & Morton correctly emphasize that one cannot be 
both “emergentist” — the PTC position — and elim- 
inativist about symbolic processing.) Stich is quite right to 
point out that in the traditional paradigm symbols are 
reified — have a hard and stable existence — to an extent 
that is not likely to emerge from connectionist networks. 
But it seems to be typical that when a macrotheory is 
reduced to a microtheory, what was seen before as a 
reified, hard, and stable substance (e.g., caloric fluid, 
rigid bodies) is now viewed as a much more abstract entity 
emerging from the interaction of lower level entities that 
are (for the time being) viewed as the reified and stable 
substrate. It is not surprising that symbols and symbol 
manipulation should suffer the same fate. 

Woodfield & Morton propose that the relation of 
symbolic to connectionist accounts may be different from 
all those included in Table 2: a relation analogous to that 
between entering into a contract and signing one’s name. 
I am unable to see how this intriguing proposal might 
work. The causal powers of contracts are instantiated in 
the world through cognitive systems that recognize 
name-signing and act upon that recognition accordingly. 
How can the causal powers of symbols be instantiated 



analogously, without some system that recognizes rele- 
vant subsymbolic activity and acts upon that recognition? 
Or is that exactly what is being proposed? 

Chandrasekaran et al. propose to characterize the 
levels issue in terms of Marr’s (1982) computational/ 
algorithmic/implementational analysis, and want to say 
that the symbolic/connectionist debate is clouded by 
looking at implementational levels instead of computa- 
tional or algorithmic levels. [See also Anderson: “Meth- 
odologies for Studying Human Knowledge” BES 10(3) 
1987.] The target article emphasizes the importance of 
looking at the higher level properties of connectionist 
systems, and this is one respect in which the PTC ap- 
proach differs from much connectionist research that is 
focused more exclusively on the lower level. Harmony 
theory, for example, can be accommodated in the Marr 
framework quite well: There are two rather clearly identi- 
fiable theoretical accounts at what can be called the 
computational and algorithmic levels; simulating a har- 
mony model brings in an implementation level as well 
(Smolensky 1986a). Chandrasekaran et al. are right to 
point out how understanding a model at the higher levels 
greatly promotes the understanding of what is “really 
doing the work” in the model, and avoids confusion over 
irrelevant details. The Marr framework is useful for 
better understanding an individual computational 
model, whether it is symbolic or connectionist. Marr's 
framework concerns relations between levels within a 
single model; it will not do, however, for the between- 
model relation that PTC posits between symbolic and 
connectionist models — unless the framework is expanded 
to permit algorithmic-level accounts that only approx- 
imately instantiate a computational account. But here 
again, the Marr view of levels is best suited for level 
relations that are found in machines (Marr's example is an 
adding machine); if approximation/refinement is crucial, 
as it is for PTC, why not replace machine-based level 
analogies by one that does full justice to the notion of re- 
finement, like the microphysics/macrophysics analogy? 

Antony & Levine want to deny PTC its place on the 
spectrum of Table 2 by arguing for what amounts to the 
Extremist Fallacy, which they state in their concluding 
paragraph. Their argument is that either connectionism 
denies that symbolic entities (e.g., constituent-struc- 
tured data and structure-sensitive operations) have ex- 
planatory roles — eliminativism — or connectionism ad- 
mits that these entities have explanatory roles, and 
therefore that connectionist models implement symbolic 
entities. This implicitly denies the Principle of Approxi- 
mate Explanation on which PTC rests. Section 7.2 is an 
attempt to show briefly not that constituent structure can 
be “read onto” connectionist networks, as Antony & 
Levine state, but that constituent structure has an impor- 
tant role to play in explanations (albeit approximate ones) 
of the high-level behavior of connectionist systems. Sec- 
tion 7.2 is quite explicit about this: “The approximate 
equivalence of the ‘coffee vectors’ across contexts plays a 
functional role in subsymbolic processing that is quite 
close to the role played by the exact equivalence of the 
coffee tokens across different contexts in a symbolic 
processing system.” Antony and Levine offer no re- 
sponse, and their argument relies critically on refuting or 
ignoring this crucial point. 

Response/Smolensky: Proper treatment of connectionism 

1.5. The neural level. The pursuit of increased coupling 
between the neural and subsymbolic modeling is advo- 
cated by Lloyd, Mortensen, Rueckl, and, to a lesser 
extent, Bechtel. My intent here is really not to argue 
against such a pursuit, but rather to be clear about the 
current gap between neural and subsymbolic models, to 
recognize the independently valid role that each has to 
play in cognitive science, to admit that each has its own 
set of commitments and goals, and to be open to any of a 
number of outcomes. It may happen that the gap between 
the two kinds of models will close; but there are reasons to 
believe (see footnote 7 and preceding discussion in the 
target article) that in fact the opposite is now occurring. It 
may be that Lloyd's golden age picture will come to pass, 
or it may be (as argued by Stone, see Section 2 below) that 
instead of one level between the neural and conceptual 
levels we will need many. 

Den Uyl makes the important point that Table 1 (target 
article) is based on typical current connectionist models 
that consist of a single module; if future models involve 
multiple modules, some of the ‘“—’s in the table will 
change to ‘+’s. Table 1 is deliberately chosen to reflect 
the current state of the art, and will need to be kept up to 
date. The real question is whether the modular structure 
of future connectionist models makes contact with the 
modular structure of the brain, or whether the models’ 
architecture will be driven by computational considera- 
tions that turn out not to be deeply tied to the neural 
architecture. 

2. Treatment of connectionist models 

Several commentaries address perceived inadequacies in 
the target article’s treatment of connectionist models; 
except where noted below, I am basically in agreement 
with the commentators. 

Touretzky argues that connectionist models of complex 
processes will have to introduce persistent internal state, 
modular structure, and built in mechanisms for complex 
operations such as variable binding. Den Uyl convincing- 
ly elaborates the call for modular structure. Both com- 
mentators argue that the kind of mathematics that has so 
far contributed nearly all the technical insights of connec- 
tionism, the continuous mathematics of dynamical sys- 
tems, will not continue to play this central role as connec- 
tionist models increase their structure and complexity. 
This conclusion may be correct, but it seems reasonable 
to adopt the working hypothesis that the mathematics 
describing current connectionist networks, if these are to 
be the modules of future systems, will have to contribute 
significantly to the analysis of the whole, even if other 
kinds of mathematics also come into play. 

Schneider argues that getting symbolic processing 
done in a connectionist network requires specially crafted 
networks, and that specially designed attentional mecha- 
nisms are needed. 

Golden wishes to elevate subsymbolic principles of 
rationality, based on statistical inference, to the defining 
characteristic of the subsymbolic paradigm. Whereas I 
accept the centrality of statistical inference to the para- 
digm, and its role in characterizing rationality, it seems 
too restrictive to exclude other computational processes 
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in dynamical systems (e.g., motor control) which have yet 
to be shown to fit in a statistical inference framework. 
Given the extent to which Golden has been able to extend 
the statistical inference analysis of harmony theory and 
the Boltzmann machine, it may turn out that all of 
subsymbolic processing will eventually be seen to fall 
within the boundaries of statistical inference. 

Stone’s elegant commentary makes the following point: 
If the target article succeeds in legitimating the hypoth- 
esis of one level intermediate between the conceptual and 
neural levels, and in characterizing its relations to levels 
above and below, why not repeat the argument to legiti- 
mate numerous levels, determined pragmatically and 
perhaps domain-specifically in response to demands for 
explanations of various cognitive regularities? Put differ- 
ently, the “subconceptual level” hypothesized by the 
target article can be viewed as containing a number of 
sublevels, all lying between the conceptual and neural, 
all characterized by connectionist processing, lower level 
accounts being refinements of higher level ones. Sorting 
out this fine structure can be expected to be a domain- 
specific enterprise. 

Lakoff points out that if subsymbolic models do not 
remain in their current isolated status but are somehow 
tied down to neural systems in the body, then the 
semantics of patterns of activity are not free for the 
theorist to invent: They are automatically grounded by 
the organism. This seems an important philosophical 
point, but one that cannot really do any modeling work 
until the gap is bridged (at least partly) between the 
subconceptual and neural levels — unless Lakoff's re- 
search program is successful: the grounding of subsym- 
bolic models in the image schemas of cognitive semantics, 
which stand proxy for body-grounded neural patterns. 
That subsymbolic models need neural grounding is also a 
theme of Mortensen. 

Belew points out that because of the difference in form 
between the knowledge in individual connectionist net- 
works and knowledge in science, the connectionist ap- 
proach confronts a scientific barrier that the symbolic 
approach does not. Put differently, in its purest form the 
symbolic paradigm assumes that knowledge in an expert's 
head is a scientific theory of the domain (Dreyfus & 
Dreyfus, in press); discovering the form of an individual 
expert’s knowledge and scientifically investigating the 
domain are almost the same activity. This is clearly not 
the case in the subsymbolic paradigm — unless we are 
prepared for a radically new definition of “scientifically 
investigating the domain.” Belew goes on to point out 
that the connectionist approach places more weight on 
the dynamic properties of cognitive systems than on their 
static structural properties. A clear and simple example of 
this important point is the case of memory retrieval: In a 
traditional symbolic architecture, whether or not an item 
will be successfully retrieved depends on the static struc- 
tural property ofits location in memory; in a connectionist 
network, successful retrieval depends on whether the 
extended process of activation flow will settle into the 
desired pattern of activity. 

Freeman points out that connectionist models have 
focused too heavily on dynamical systems with simple 
static equilibria, and paid too little attention to dynamical 
systems with much more complex global behavior. Al- 
though this is undoubtedly true, it is changing, with 
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Freeman’s work on chaotic equilibria and Jordan’s (1986) 
on periodic equilibria (where “equilibria” really means 
“attractors’). As for the flamboyantly eliminativist asser- 
tions ending his commentary, I think Freeman would be 
much harder pressed to live with the consequences of this 
neuromacho talk if he were building connectionist mod- 
els of language processing rather than models of olfactory 
pattern recognition in rabbits. 

Dreyfus & Dreyfus emphasize that because the sub- 
symbols of PTC are‘ not necessarily context-free micro- 
features, the PTC picture deviates in important ways 
from some “language of thought” accounts. This issue is 
discussed in the target article in Section 7.2, but Dreyfus 
& Dreyfus are right to emphasize that the distributed 
subconceptual representations that networks develop for 
themselves on their hidden units tend to be much less 
context-free than the example of Section 7.2 would 
indicate. 

Lycan rejects the definition of conceptual and subcon- 
ceptual levels given in the article, and so it is not surpris- 
ing that he has trouble making sense of the hypotheses 
that refer to these levels. Nonetheless, his substantive 
comments seem by and large to support the PTC view. 
He points out that the “complete, formal, and precise” 
cognitive account that PTC assumes to exist at the sub- 
conceptual level is an account at a semantically in- 
terpretable level - however, the interpretation is in 
terms of subconceptual features such as “roundness pre- 
ceded by frontalness and followed by backness.” The 
Dreyfus & Dreyfus point just discussed entails that the 
typical subconceptual feature will be much more context 
dependent and obscure than this, making semantic in- 
terpretation at the subconceptual level a messy business. 
But, as Lycan points out, the cleaner semantic interpreta- 
tions residing at the conceptual level come with much 
more difficult computational properties. For a complex 
subsymbolic system, the lower level offers clean pro- 
cesses but messy interpretations, while the upper level 
offers the reverse. The clean way to go is to do semantic 
interpretation at the upper level and “syntax” — process- 
ing — at the lower level. The clean semantics is carried by 
symbols that float on the clean syntax of the subsymbols. 

3. Treatment of symbolic models 

It is clear that a number of the commentators were 
looking in the target article for arguments that a connec- 
tionist formalism is in principle superior to a symbolic 
formalism. These people were particularly disappointed 
with my treatment of the “symbolic paradigm” and were 
quick to point out that arguments against the symbolic 
paradigm as I characterized it are not arguments against 
symbolic computation more generally construed (e.g., 
Chandrasekaran et al., Lycan, Prince & Pinker, Rey, 
Van Gulick). 

There is a good reason why I did not try to set the 
discussion in terms of symbolic vs. connectionist for- 
malisms, each broadly construed. I am convinced that 
such a discussion is, at least at this point, fruitless. As was 
spelled out in the target article in Section 2.4, symbolic 
computation broadly construed can be used to implement 
connectionist computation, broadly construed, which in 
turn can be used to implement a Turing machine, and so 
all of symbolic computation. 



Thus, for a meaningful discussion of the relation be- 
tween connectionist and symbolic models, something 
less than the broadest construals of the approaches must 
be put on the table. For each of the approaches, I 
identified a single, coherent approach to cognitive model- 
ing that has a significant number of practitioners and 
scientific interest. I coined aterm, “subsymbolic,” for the 
connectionist approach, but did not have the correspond- 
ing foresight to coin a term for the symbolic approach, 
instead giving it the generic name “the symbolic para- 
digm.” Explicit, repeated disclaimers did not suffice to 
convey the deliberately restricted nature of what I called 
“the symbolic paradigm.” 

It is not the role of commentators to redefine the 
grounds for debate, as Prince & Pinker, for example, 
explicitly attempt to do. The target article is not an 
analysis of the relation between connectionist and lin- 
guistic theories and it explicitly does not claim to be. That 
is the ground on which Prince & Pinker and several other 
commentators want to take their stand; unfortunately, it 
is not the ground of this treatment. 

Many commentators pointed out that conceptual vs. 
subconceptual levels and symbolic vs. connectionist com- 
putation are independent dimensions; that symbolic 
computation does not commit one to working at the 
conceptual level (e.g., Chandrasekaran et al., Lindsay, 
Lycan, Prince & Pinker, Rey, Van Gulick). This inde- 
pendence is explicitly acknowledged, and even empha- 
sized, in the target article. In (4) and (8), the indepen- 
dence is manifest in distinguishing the “semantic” from 
the “syntactic” (processing) assumptions of the two para- 
digms being defined. I insisted in Section 2.4 that unless 
the syntactic assumptions are supplemented (read: “inde- 
pendent assumption added”) by semantic ones, the dis- 
cussion immediately degenerates to the trivial mutual 
implementability that a few paragraphs ago was cited as 
the reason for avoiding the most general characterization 
of the two approaches. 

That semantic levels and types of computational pro- 
cesses are independent is again indicated by the two- 
dimensional format of Table 2 (target article). Since the 
syntactic and semantic assumptions are independent, 
there is a two-by-two space of modeling approaches, on 
which the “semantic axis” is the semantic level at which 
the model's processing is defined (conceptual or subcon- 
ceptual) and on which the other “syntactic axis” is the 
type of computation used (symbolic or connectionist). 
The “symbolic paradigm” occupies the concep- 
tual/symbolic corner, and the “subsymbolic paradigm” 
occupies the opposite, subconceptual/connectionist cor- 
ner. The other two corners did not figure prominently in 
the target article. One is the conceptual/connectionist 
approach: logal connectionism, mentioned in passing as 
(9). The other is the subconceptual/symbolic approach 
typified by much linguistics-based fheory, and explicitly 
excluded from the scope of the target article. 

The subconceptual/symbolic approach is difficult to 
address because it is the least constrained of all. The 
symbols manipulated can represent arbitrarily fine- 
grained features, and the operations performed can be 
arbitrarily complex symbol manipulations. Certainly 
such an unconstrained approach cannot be lacking in 
power relative to any of the others, since in a sense all the 
others are special cases of it. For example, as discussed in 
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Section 2.4, a LISP program simulating a subsymbolic 
model is riot a model of the symbolic paradigm in the 
sense of (4) but it certainly is a model of this most general 
symbolic approach. 
Why would a theorist willingly forgo a framework that 

is completely unconstrained for one that is much more 
constrained? Theorists do this all the time, when they are 
committed to a working hypothesis; they believe that the 
constraints willingly accepted will serve to guide them to 
valid accounts. The jury won't be in on the connectionist 
constraints for some time. But it certainly isn’t valid to 
argue against the subsymbolic approach solely on the 
ground that it is more constrained. The theme “symbolic 
computation (most broadly construed) can do whatever 
connectionism can do” is a triviality. (Nelson seems to be 
making such a point, though I am honestly not sure.) The 
point is that by accepting the constraints they do, connec- 
tionists have been led to interesting learning and process- 
ing principles that could in principle have been, but in 
practice were not, discovered by theorists who did not 
willingly accept the constraints that connectionism 
imposes. 

Although many commentators wanted to quickly dis- 
miss the (conscious) conceptual level as irrelevant to 
characterizing the symbolic approach, there is a strong 
tradition of cognitive modeling and philosophical analysis 
that fits squarely within the symbolic paradigm as defined 
in (4). For example, models of skill acquisition (e.g., 
Anderson 1983) in terms of internalization of taught rules, 
followed by rule compilation and chunking, start with 
taught rules that must rely on consciously accessible 
concepts, and then manipulate these rules in ways that 
never go below the conscious level toward the concep- 
tual. [See Anderson: “Methodologies for studying 
Human Knowledge” BAS 10(3) 1987.] Philosophical ar- 
guments from the structure of mental states, like those 
championed by Fodor and Pylyshyn (1988) and presented 
in the commentary of Rey, apply at, and only at, the level 
of conscious thoughts. Chomsky has made it fashionable 
to deny the relevance of conscious access, but these 
arguments cannot survive without it. [See Chomsky: 
“Rules and Representations” BBS 3(1) 1980.] 

4. Adequacy of connectionism in practice 

There are a lot of people out there who are deeply 
annoyed by the outlandish claims being made in some 
quarters about the accomplishments and power of con- 
nectionism. This impatience is due in no small part to 
having listened to such claims about symbolic AI for the 
past 30 years. I am one of these annoyed people, and the 
target article contains no claims about the power of 
connectionism, which is, at this point, essentially com- 
pletely unknown. The statements in (1) were explicitly 
labeled as my personal beliefs, not as claims, included 
only in the hope of increasing the clarity of the paper. Just 
the same, a number of commentators took this oppor- 
tunity to address perceived inadequacies in the power of 
connectionist models. 

It seems that Prince & Pinker do not accept my right to 
define the grounds of my analysis to exclude linguistic- 
based models; they go on to accuse me of conflating a 
number of issues. I am perfectly aware that symbolic 
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computation can incorporate subconceptual features, 
parallel processing, and (as they might have added) soft 
constraints, nonmonotonic logic, and fuzzy sets. The 
irrelevance of all this for the present treatment of the 
target article has just been spelled out in the preceding 
paragraphs. 

In reference to my remarks comparing inference with 
soft and hard constraints (Section 8), Prince & Pinker 
make the elementary point that adding a new rule to a 
system can radically change the “ecology of the gram- 
mar,” and that rule interaction creates a kind of context 
dependence. My point was simply that hard constraints 
can be used one at a time to make inferences, whereas soft 
constraints cannot. Given p and p— q, we can conclude q 
with certainty, without giving any consideration to what- 
ever other rules may be in the system. By contrast, if we 
know that node i is active, and that there is a positive 
connection from i to j, we can’t conclude anything about 
the activity of node j until we know what all the other 
connections and activities are. This difference has impor- 
tant implications for performing inferences with hard and 
soft constraints, and is true despite the obvious fact that 
the total set of inferences using hard rules depends on the 
total set of rules. 

Prince & Pinker go on to enumerate what they take to 
be several problems for connectionist systems. The first is 
that an “entity is nothing but its features”; they base this 
on the Rumelhart and McClelland (1986) model of past- 
tense acquisition. But it has been emphasized in the 
connectionist approach for some time (e.g., Hinton 
1981), that it is in general important to have “micro- 
features” that serve to hold arbitrary patterns providing 
names for entities: There is nothing intrinsic to the 
connectionist approach that forbids, for example, the 
pattern representing a verb stem from consisting in part 
in a pattern encoding the phonological form and in part a 
pattern that serves as a unique identifier for that stem 
(e.g.. to distinguish homonyms). In fact, arguments such 
as those in the commentary of Dreyfus & Dreyfus imply 
that such microfeatures are to be expected among those 
invented by networks in their hidden units. 

Next, Prince & Pinker accuse me of “bait-and-switch” 
because subsymbols are supposed to be more fine- 
grained or abstract than symbols, yet I call Wick- 
elfeatures, which combine features of an entity with 
features of its context, “subsymbols.” It is hard to see 
any duplicity or contradiction here, since in Section 7.2 I 
am quite explicit about the appearance of context in 
subsymbols. There is nothing about fine-grainedness 
that is inconsistent with context-sensitive subsymbols. 

Prince & Pinker are quite right that subsymbols ade- 
quate for connectionist processing are difficult to discover 
and not identical with the subconceptual features of 
symbolic theory. That is why the subconceptual level of 
the subsymbolic paradigm is a new one, distinct from that 
of fine-grained features in symbolic theory. And that is 
why there is so much interest in connectionist learning 
systems that discover their own subsymbols; the neces- 
sary technology for this was discovered after the develop- 
ment of the model on which Prince & Pinker base their 
entire critique. 

Prince & Pinker are concerned that connectionist 
networks may blend competing potential outputs and 
thereby create nonsense. Again, this is a real problem, 
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and one for which solutions exist. (For example, see the 
discussion of phase transitions in Smolensky 1986a.) 

Prince & Pinker are also concerned about selectively 
ignoring similarity. They say that because there is behav- 
ior that looks all-or-none, only mechanisms that are all-or- 
none can do the job. Of course, the whole point of the 
subsymbolic approach is to explain how symbolic pro- 
cesses (e.g., all-or-none processes) can emerge from pro- 
cesses that are soft and statistical. But it does not provide 
any explanation to say that the reason there are all-or- 
none behaviors (sometimes) is that there are all-or-none 
processes. 

The rest of Prince & Pinker’s commentary seems to 
follow the same pattern: Here’s something X that’s easy 
for a symbolic model; X is hard for a connectionist model; 
look at the Rumelhart and McClelland model's first stab 
at trying to do X; that isn’t good enough; therefore 
connectionist models can’t possibly do X — in fact, “con- 
nectionist models that are restricted to associations 
among subsymbols are demonstrably inadequate.” In 
every case, it is true that connectionist models don't yet 
do X well enough, that research is under way on how to do 
X better, and that the state of the art is already several 
years beyond what Prince & Pinker critique. The conclu- 
sion that connectionist models are “demonstrably / 1ade- 
quate,” on the basis of the investigation of a single model 
representative of the previous generation of connec- 
tionist technology, seems grossly premature. As I state in 
no uncertain terms in (1), it currently seems quite un- 
knowable whether connectionist models can adequately 
solve the problems they face. 

The commentary of Freidin seems to be a rerun of 
Chomsky’s greatest hits. That old favorite, the poverty of 
the stimulus, is a purely intuitive argument with no 
formal backing in the absence of hypothesized mecha- 
nisms to test it. Fans of the argument must be delighted 
to see that connectionism is working its way to a position 
where the argument can be put to a new formal test. 
Freidin reminds us of the familiar point that a crucial 
aspect of the learnability of language is the learnability of 
the abstractions to which linguistic regularities are sen- 
sitive — or functionally equivalent abstractions. It will 
then no doubt be cause for satisfaction that a main activity 
of connectionist research is the study of the learnability of 
abstractions. The problem of distinguishing ungram- 
matical sentences from novel grammatical sentences is of 
course a special case of the problem of inductive gener- 
alization, and not at all special to language. This problem, 
too, figures centrally in connectionist research; every 
typical connectionist learning system that has ever been 
built has, with greater or lesser success, solved this 
problem. The standard learning paradigm is to choose a 
set of target patterns to be learned (the “grammatical 
sentences’), to train the network on a subset of these 
patterns (no ungrammatical sentences presented!), and 
finally to test whether the trained network generalizes 
correctly to distinguish the unseen target patterns from 
the nontargets, i.e., to distinguish “novel grammatical 
sentences’ from “nongrammatical sentences.” Success of 
course depends on the regularities that distinguish the 
“grammatical” and “ungrammatical” cases, and the rep- 
resentativeness of the training set. 

Freidin takes the traditional point of view that a con- 
nectionist model, PARSNIP, that successfully learns to 



model performance on grammaticality judgments, 
doesn’t learn “grammar” (because Chomsky has patented 
the term to apply to something else). What is a bit 
puzzling is that less than a half dozen paragraphs earlier, 
Freidin claims that when it comes to building a connec- 
tionist model of linguistic performance, “there is no 
reason to believe that such a model will succeed.” 

Before leaving Freidin’s commentary an obvious com- 
ment about innateness is required. A symbolic view of 
language acquisition currently popular in the conceptual 
neighborhood of Cambridge, Mass., involves an innately 
specified parametrized set of grammars together with an 
empirical hypothesis-testing phase of parameter adjust- 
ment. There is no a priori connectionist or even PTC view 
of how the learning of language is to be divided between 
innate and acquired knowledge. In a very literal sense, 
every connectionist learning network is an innately spec- 
ified parametrized set of possible knowledge configura- 
tions together with an empirical hypothesis-testing phase 
of parameter adjustment. The difference is that instead of 
a few discrete parameters embedded in complex sym- 
bolic rules, the innate endowment is a lot of continuous 
parameters embedded in simple numerical “rules.” 
There is no obvious way in which the abstractions enter- 
ing in the symbolic innate rules can be embedded in the 
innate structure of a connectionist network, but it is far 
too early to tell whether there is a nonobvious way that 
something equivalent can — and should — be done. 

In a related vein, Shepard argues that the connec- 
tionist approach has systematically neglected an essential 
question: How does adaptation on an evolutionary time 
scale configure networks so that they are innately able to 
learn what they must learn? I believe that Shepard is 
right, both in characterizing this as a lack and in empha- 
sizing its importance. The neglect is probably a result of 
the lack of any technical handle on the problem; this is 
obviously a fertile ground for someone with the right set 
of tools. (Chandrasekaran et al. raise the same issue of 
grappling with the prior commitments embedded in 
network architectures.) 

Can patterns of activity, Rey wonders, be used to 
create mental states with the properties he demands in 
his (1)—(4)? I believe that the approach laid out in Smol- 
ensky (1987), which constructs and analyzes fully dis- 
tributed structured representations composed of subpat- 
terns in appropriate ways, can get close enough to do the 
necessary work. (Indeed it was exactly considerations 
such as Rey’s (1)—(4), impressed upon me by Rey, Fodor, 
and Pylyshyn [personal communication], that motivated 
this research.) 

The commentary of Lehnert makes the following 
points: 

(a) Psychologists are attracted to connectionism be- 
cause of theorem envy. 

(b) Connectionism is methodology-driven research 
and that’s dangerous. 

(c) The methodology driving Smolensky is physics. 
(d) Smolensky wants to ignore representational 

issues. 
The presupposition of (a) is false: The symbolic ap- 

proach offers many more theorems, both in absolute 
numbers and in current rate of production, than the 
connectionist approach (see any issue of the journal Ar- 
tificial Intelligence); it happens that the school of sym- 
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bolic AI to which Lehnert belongs prefers to regard such 
theorems as irrelevant. 

Point (b) is not argued, simply asserted. It does not 
seem correct, but for the sake of argument, I will accept 
it. With a formalism as undeveloped as connectionism, 
anyone who thinks the approach will get very far without 
considerable attention to methodological problems is, I 
think, quite naive about the maturity required of a for- 
malism to be adequate for cognitive modeling. Symbolic 
computation was developed through decades of meth- 
odology-driven research, and researchers who now want 
to apply it can afford the luxury of focusing exclusively on 
problem domains. The connectionist community as a 
whole cannot afford that luxury at this time. Some of us 
have to worry about the methodological problems, and 
we each apply the tools from which we think we can get 
the most mileage. Mine happen to be tools from physics. 

I do not understand why Lehnert thinks I believe 
representational issues are not central to connectionism. 
I am unaware of any paper that devotes more attention 
than the target article to foundational questions of con- 
nectionist representation. As for technical attention to 
connectionist representation: “For most . . . aspects of 
connectionist modeling, there exists considerable formal 
literature analyzing the problem and offering solutions. 
There is one glaring exception: the representation com- 
ponent. This is a crucial component, for a poor represen- 
tation will often doom the model to failure, and an 
excessively generous representation may essentially 
solve the problem in advance. Representation is particu- 
larly critical to understanding the relation between con- 
nectionist and symbolic computation, for the representa- 
tion often embodies most of the relation between a 
symbolically characterized problem (e.g. a linguistic task) 
and a connectionist solution.” This quote is from Smol- 
ensky (1987, p. 1), which sets out a general mathematical 
framework for analyzing the problem of connectionist 
representation, and defines and analyzes a general tech- 
nique for representing structured data, such as lists and 
trees. This paper's results are presented, unfortunately 
for Lehnert, as theorems, but the work should leave little 
doubt about the importance I attach to issues of connec- 
tionist representation. 

First it is claimed by Hunter that my definition of 
connectionism is too broad; he next says that my claims 
“are perhaps best taken to refer” to a very narrowly (and 
self-inconsistently)® defined set of networks; he then 
proceeds in the bulk of the commentary to argue that 
these networks are much too narrow to constitute a 
general framework for cognition. My claims would in fact, 
seem best taken to refer to exactly the systems I defined 
them to refer to, and not to the small set Hunter consid- 
ers. Whatever weaknesses the target article may have, 
extreme narrowness of the framework is not among them. 

The comments of McCarthy about unary fixation and 
lack of “elaboration tolerance” seem to be on target. At 
this point, connectionist models tend to be developed 
with the barest minimum of representational power for 
the target task. If the task is beefed up even a little, the 
model has to be scrapped. This is a sign of the immaturity 
of connectionist representations; it is hard enough to get 
one that is barely adequate — the possibility of doing more 
is not usually entertained. 

It would be a mistake to leave the impression that 
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connectionist models cannot represent relations higher 
than unary. One technique involves binding arguments 
of a relation to the slots in the relation. Research on this 
problem includes Hinton’s (1981) work on semantic net- 
works, McClelland and Kawamoto’s (1986) work on se- 
mantic role assignment, Derthick’s (1986; 1987) connec- 
tionist implementation of a micro-KL-ONE, Touretzky 
and Hinton’s (1985) connectionist implementation of a 
simple production system, and my work (Smolensky 
1987) on the representation of symbolic structures. In 
much of this work, the key is to use microfeatures that 
denote the conjunction of a microfeature of the slot and a 
microfeature of the argument filling that slot: Greater- 
than-unary relations are achieved by using greater-than- 
unary microfeatures. For greater-than-unary analysis of 
rooms, the network would need to be trained not on 
patterns describing single rooms in isolation, but patterns 
describing configurations of rooms, with the necessary 
interrelations included in the descriptions. 

As to the proper connectionist treatment of an English 
speaker pronouncing Chinese names, the analysis im- 
plicitly proposed in the target article is the following: 
Rules about how to pronounce Chinese Q and X are 
entered into the (connectionist-implemented) conscious 
rule interpreter as S-knowledge (Section 6.3); resident in 
the intuitive processor are the NETtalk-like connections 
constituting P-knowledge of English pronunciation. 
When the English speaker is reading English text, the 
computation is done in parallel in the intuitive processor. 
When a Chinese name comes along, the intuitive pro- 
cessor fails to settle quickly on a pronunciation because of 
the non-English-like letter sequences; in particular, se- 
quences starting with Q or X are likely to be quite 
unpronounceable, as far as this P-knowledge is concerned. 
Because the intuitive processor has failed to settle quickly 
on a pronunciation, the rule interpreter has a chance to 
carry out the rather slow process of firing its rules for 
pronouncing Q and X. With some practice, the intuitive 
processor starts to tune its weights to handle these new 
cases; the S-knowledge is slowly and indirectly “com- 
piled” into P-knowledge. 

This account makes a number of predictions about 
performance: Pronunciation of Q- and X-names will (ini- 
tially) be accompanied by conscious awareness of the use 
of the rules, can be interfered with by other conscious 
processes, and will have an identifiably different time 
course; many more mistakes would be made if, instead of 
Q and X, letters were used that are pronounceable in 
English in a larger variety of contexts (e.g., if T and K 
were pronounced D and G), and so forth. 

_ Note that the proper treatment of this task does not 
involve instantaneously adjusting the connections in the 
NETtalk-like intuitive processor to incorporate the pro- 
nunciation of Q and X; these connections are established 
only slowly through practice. But at instruction time, it is 
necessary to change instantly many connections in the 
conscious rule interpreter in order to store the new rules. 
How this might be done is the subject of current research, 
but note that it is only the special-purpose conscious rule 
interpreter, built on the language processor, that needs 
to perform one-trial learning; specialized intuitive mod- 
ules do not need this capability. The basic idea for how 
the language processor can handle one-trial learning is 
this: The ability to understand a language requires a 
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network that has many “virtual harmony maxima’ at 
states corresponding to the well-formed sentences and 
their meanings (what I call “virtual memories”); when a 
well-formed sentence is heard, even once, the prior 
tuning of the network to the language enables the net- 
work to turn the “virtual harmony maximum” corre- 
sponding to that sentence into a real harmony maximum: 
a stored memory. Whether this proposal can actually be 
carried out is unknown at this time. 
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NOTES 
1. Some commentators use “implementation” loosely, ap- 

parently equating it with a weaker notion such as instantiation 
(e.g., Rey and Van Gulick). In the present context, it is advis- 
able to use terms for various relations between levels with 
precision; all statements about the subsymbolic approach not 
being “merely implementational” refer to this specific sense of 
“jmplementation.” 

2. The case of accidental coincidences is what Woodfield & 
Morton call “killing two birds with one stone.” 

3. Note that just the reverse is true of implementations: 
There, according to the microaccount, the ontology of the 
macroaccount must exist, since it can be logically and exactly 
derived from the microaccount. If the microtheory is right, the 
macrotheory must be right. 

4. That the macrotheory has explanatory priority for most 
phenomena in C seems to be behind the comments of Cleland, 
Woodfield & Morton, and Prince & Pinker. Given this, the 
hypothesis in (10) of the target article (that the subsymbolic 
account is complete) should not be construed to refer to explana- 
tory completeness but rather to the sense of “completeness” in 
which quantum theory in principle applies to all phenomena, 
whereas Newtonian mechanics does not. 

5. It’s obvious the two sides were named by someone looking 
from the wrong direction. 

6. Simulated annealing is not really a training technique, and 
the method Hunter presumably means, Boltzmann learning, 
can't really be used with feedforward networks. 
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